Technic al Memorandum

February 17, 2023

To: Sandra Hika ri, Project Manager
Oregon Department of Transportation 123 NW Flanders St
Portland, OR 97209
From: Nicholas Gross, Alic e Root, Ashleigh Ludwig PE, AICP, Hermanus Steyn, PE
CC: Scott Hoelscher, Clackamas County
RE: US 26 Rhododendron Design Refinement Plan
IECHNICAL MEMORANDUM \#5: DESIG N REFINEMENTAND ALTERNA TIVES EVALUATIO N MEMORANDUM
Contents
Executive Summary 2
Purpose 2
US 26 Concept Development 2
No-Build 3
5-Lane Altemative (with Pedestrian Refuge Island) 4
3-Lane Altemative(s) 18
Public Input \& Stakeholder Feedback 33
Community Drop-in Outreach Event 33
Sta keholder Interviews 33
Technic al Workshop 34
Mobility Advisory Committee (MAC) 35
US 26 Altematives Evaluation 35
Evaluation Criteria \& Performance Measures 35
Altematives Evaluation 38
Evaluation Criteria Sc oring Summary 54
US 26 Consultant Team Preliminary Recommendation 55
Next Steps 55

Executive Summary

There are varying opinions for the various design element widths associated with the altematives. The design refinement and altematives evaluation process summarized in this memorandum, identifies a preferred altemative to be advanced into conceptual design including a site plan of the proposed improvements. The 5-lane and 3-lane altematives have been refined based on feedback received from Clackamas County, the Mobility Advisory Committee (MAC), a nd ODOT, inc luding ODOTtraffic, maintenance, landscape architecture, a ctive transportation, a nd technical centergroups, aswell as public feedback received aspart of the in-person outreach event. As the project continues to advance in its refinement and design, opportunities to slow speeds and reduce the overall cross section width should be explored, consistent with the intended outcomes and comidorvision for Rhododendron.

Note: ODOTstaff has raised the suggestion of exploring a 4-la ne altemative (two westbound, a two-way left-tum (TWLT), a nd one eastbound) as a potential altemative to improve operational conditions within the study a rea. The 4-la ne altemative was not evaluated as part of the design refinement and altemative evaluation due to scope limitations; however, if ODOT wishes to explore a 4-lane, it can be explored under a separate planning study.

Purpose

This technic al memorandum describes, evaluates, and recommends a preferred altemative for the US 26 comidor in Rhododendron between mileposts 44.0 and 44.4. The project team evaluated three altematives including a 5-Lane (with Pedestrian Refuge Island), 3-Lane (with Pedestrian Refuge Island), and 3-Lane (without Pedestrian Refuge Island) ${ }^{1}$. The 3-Lane and 5-Lane altematives were developed to achieve the Refinement Plan intended outcomes of improving safety and operations on the highway for all modes. For comparison purposes, the No-Build is illustrated in the following section.

The project teamgathered input to develop preliminary design ideas through the Community Drop-In Event and review of background material including but not limited to Rhody Rising Rhododendron Village Center \& Community Visioning Plan (Reference 1), Rhododendron Ma in Street Redevelopment Concept Plan (Reference 2), The Villages at Mt. Hood Pedestrian and Bikeway Implementation Plan (Reference 3) as well asdesign guidance included in ODOT's 2023 Highway Design Manual (HDM). Additional public input will be solicited as part of the virtual public meeting.

US 26 Concept Development

The following section describes and illustrates the existing and proposed altematives to address the needs and defic ienciesidentified along US 26 in Rhododendron. Typic al sections along with concept design roll plots were produced to convey the proposed altematives. Upon selection of a preferred altemative, further design deta ils will be explored to identify potential constraints, challenges, and considerations.

The altematives were developed based on field observations, initial assessments by the consultant team, national and state guidance for multimodal facility selection, and input from the Project Management Team (PMT), as well ascommunity feedback received aspart of the Community Drop-In Event conducted on August 11 from 2:00 to 4:00pm.

[^0]
No-Build

The No-Build a ltemative mainta ins the current 5-lane cross section a nd makes no cha nges to existing conditions. The No-Build altemative cross section is illustrated in Figure 1.

Figure 1: No-Build Altemative Cross Section

As illustrated above, the No-Build cross section includesfour 12-foot travel lanes, one 14-foot two-way lefttum lane (TWLTL), a nd two 6-foot shoulders (shoulder bikeways). The No-Build pavement width is approximately 74 feet, and the existing right-of-way (ROW) is 90 feet.

Note: Based on field observations, a building structure on the south side of US 26 just west of the Snowline Motel encroaches into the existing ROW.

Table 1 summarizes the No-Build road way context and cross-sectional dimensions.

Table 1. No-Build Altemative - Roadway Characteristics

Number of lanes	lane Width	$\begin{aligned} & \text { Curb-to- } \\ & \text { Curb } \\ & \text { Width } \end{aligned}$	Target Speed	Posted Speed	Bicycle Facility**	Horizontal Clearance	Sidewalk
5	12 ft travel lanes, 14 ft TWLTL*	74 ft	Null	40 MPH	6 ft shoulder	74 ft	None

*TWLTL = Two-Way Left Tum Lane
**Bicycles are currently using the 6-foot shoulder
Note: No-Build $85^{\text {th }}$ percentile speeds were recorded as 59 and 57 MPH in the east and westbound directions, respectively. There is an existing speed feedback sign for westbound traffic at the east end of Rhododendron where the 40 MPH posted speed limit begins.

5-Lane Altemative (with Pedestrian Refuge Island)

The 5-La ne Altemative (with Pedestrian Refuge Island) reduces travel lane widths from 12 feet to 11 feet and includes buffered bike lanes, sidewalks, and a pedestrian refuge island at proposed crossing locations to improve access and increase safety for people crossing US26². The 5-Lane Altemative (with Pedestrian Refuge Island) cross section is illustrated in Figure 2.

Figure 2: 5-Lane Altemative (with Pedestrian Refuge Island) Cross Section

As illustrated above, the 5-Lane Altemative (with Pedestrian Refuge Island) cross section includes four 11foot travel lanes, one 14 -foot TWLTL (2 feet of shy distance provided adjacent to pedestrian refuge island), and two 8 -foot buffered bike lanes (6-foot bike lane and 2-foot buffer). The 5-Lane Altemative (with Pedestrian Refuge Island) ma inta insthe existing pavement width of approximately 74 feet. No encroachment into the existing 90 -foot ROW is proposed; however, utility relocation a nd build ing impacts may need to be addressed due to the installation of sidewalks. In constrained locations (e.g., building proximity), the project can considercurb-tight sidewalks, while in other areas separated sidewalks are preferred. Snow storage for this altemative is likely to impact the bike lane and/or sidewalk.

Table 2 summarizes the 5-Lane Altemative (with Pedestrian Refuge Island) roadway context and crosssectional dimensions.

Table 2. 5-Lane Altemative (with Pedestrian Refuge Island) - Roadway Characteristics

| Number
 of Lanes | Lane Width | Curb-to-
 Curb Width | Target
 Speed | Posted
 Speed | Bicycle
 Facility | Horizontal
 Clearance | Sidewalk** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 11 ft travel lanes,
 $14 \mathrm{ft} \mathrm{TWLTL*}$ | 74 ft | 35 MPH | 40 MPH | 8 ft | 32 ft | 6 ft |

*TWLTL = Two-Way Left Tum Lane
** Dimension shown in cross section figure includes 6" curb
Appendix "A" illustrates the ROW impacts and needs for the 5-La ne Altemative (with Pedestrian Refuge Island).

[^1]
Enhanced Crossing (5-Lane Altemative (with Pedestrian Refuge Island))

ODOTTraffic Manual

A pedestrian crossing is proposed as part of the 5 -Lane Altemative (with Pedestrian Refuge Island). Ba sed on the cross section illustrated above, number of lanes crossed, an annual a verage daily traffic (AADT) range of $9,000-12,000$ vehic les per day ${ }^{3}$, and the antic ipated operating speed ${ }^{4}$, ODOT's Traffic Manual identifies the following treatments:

Recommended treatments:

- Continental-style crosswalk markings, parking restrictions on crosswalk approach (see Table 310.3-B), lighting according to ODOTTraffic Lighting Design Manual. Crossing waming sign(s) forschool crosswalks, midblock crosswalks, or speed $\geq 30 \mathrm{mph}$
- Wide advance stop bar and STOP HERE FOR Pedestrian sign.
- Rectangular Rapid Flashing Beacon (RRFB)

Optional treatments:

- Curb extensions
- Traffic signal or pedestrian hybrid beacon (PHB)

Summary

Table 3 summarizes the recommended pedestrian crossing facility treatment according to ODOT's Traffic Manual including presence of a pedestrian refuge island, horizontal clearance for freight and over dimensional sized vehicles, as well as bic ycle and pedestrian facility treatments.

Table 3. 5-Lane Altemative (with Pedestrian Refuge Island) - Recommended Facility Treatments

Pedestrian Crossing Facility	Refuge Island	Horizontal Clearance	Target Speed	Pedestrian Facility	Bicycle Facility
RectangularRapid Flashing Beacon (RRFB) ${ }^{1}$	Yes	32 ft	35 mph	6-foot sidewalks	8-foot bike lanes

Operational Performance Summary

Operationally, the 5-Lane Altemative (with Pedestrian Refuge Island) functions the same as the 5-La ne NoBuild scenario, which was evaluated in Technic al Memorandum \#4: Safety, Operations, Active Transportation Analyses (Reference 5). The 5-la ne analysis a nd key a ssumptions are summarized below.

[^2]
Volume Development and Analysis Assumptions

A detailed summary of volume development and forecasts are provided in Technical Memorandum \#4 and the Methodology Memorandum. This section summarizes key assumptions and findings from the operational a nalyses.

Existing Traffic Volumes

The project team collected 24-hour tube counts at two locations in Rhododendron: approximately 350 feet west of East Little Brook Lane and a pproximately 150 feet west of East Henry Creek Road. Counts were collected over a seven-day period between Friday, May 13, 2022, and Thursday, May 19, 2022. The tube count data includes vehic le classification, traffic volume, and vehicle speed. The project team's evaluated typic al weekday conditions and peak conditions. The highest traffic volumes occured on Sunday. For this reason, the project team selected Sunday to represent peak traffic conditions. The US 26 peak hour on Sunday occurred between 3:00 and 4:00 PM. To represent typic al weekday peaks, the team considered data from Tuesday to Thursday, excluding Friday, which also showed peaking characteristics associated with recreational traffic, similar to Sunday.

The peak hour between Tuesday and Thursday occurred between 1:45 and 2:45 PM on Thursday. Based on these results, the project team found Thursday to be the most representative day of the week for midweekday peak hour volumes.

The project team collected tuming movement counts (TMCs) at the study intersections on Thursday, May 12, 2022, from 2:00-4:00 PM ${ }^{5}$ as well as Sunday, May 15, 2022, from 1:00-3:00 PM. Traffic volume from Thursday reflectstypic al weekday conditions, and the traffic volume from Sunday reflectspeak weekend volume conditions. There were no moming TMCscollected due to relatively low volumes during that time period.

The project tea m completed the following adjustments to obtain analyses volumes for Existing Conditions:

- Using the On-Site ATR method, a calc ulated seasonal a djustment factor of 1.42 was used to adjust the traffic volumesfrom the count month of May to the peak month of July.
- The project team increased Sunday traffic volumes by 10 percent, because the tube counts show traffic volumesto be approximately 10 percent higherbetween 3:00 a nd 4:00 PM on Sunday, compared to the peak hour of the TMCs (2:00-3:00 PM), which were only conducted between 1:00 and 3:00 PM on Sunday.

Figure 3 and Figure 4 illustrate existing traffic volumes during the Thursd ay a nd Sunday peak hours, respectively.

[^3]

- Mile Points

- Mile Points

Study Corridor

- Study Area Intersections

Figure 4

Future Volume Development

Due to the rural nature of Rhododendron, standard growth is antic ipated. ${ }^{6}$ As noted in the Methodology Memorandum, the historical trends method wasused to project volume to reach the 2030 opening year and the 2050 future year volumes. An a nnual growth rate of 1.82 percent was applied to all movements at the study intersections.

- The project team noted that the volume projections may overestimate side street and driveway volume projections, which may grow at rates slower than that of the highway.
- The project team noted that westbound volumesexceeded the capacity of the up-stream two-lane highway section on Sunday. Based on this, the projected demand in Rhododendron cannot be realized during this time. To account for those conditions, the tea m completed the a nalyses with volume constrained to 1,700 vehicles/hour (the capacity of the up-stream two-lane highway) during the time periods when projec ted volume is higher than 1,700 vehic les/ hour.
- Operational results presented in the operational summary tables below reflect both the analyses using the projected demand and the projected (constrained) volume.

Pedestrian and Bicycle Volumes

Weekday pedestrian and bicycle volumeswere collected in May 2022 aspart of the intersection TMCs. The observed pedestrian volumes during the study hours a re shown in Figure 5. An increase in pedestrian volume was observed on Sunday, with five pedestrians at the E Little Brook Lane intersection and six pedestrians at the Mt Hood Foods intersection.

24-hour pedestrian and bicycle count volumes were collected at the US 26 and Little Brook Lane intersection on Tuesday, August 9, 2022. A total of eight cyclists a nd twenty pedestrians were counted at the study intersection. Seven pedestrians were counted between 5:45 am and 9:45 am, and the remaining thirteen pedestrians were counted between $1: 30 \mathrm{pm}$ and $7: 30 \mathrm{pm}$. Cyc lists were active throughout the second half of the day between $12: 45 \mathrm{pm}$ and $8: 15 \mathrm{pm}$. Of the twenty pedestrian counts, sixteen were counted crossing US 26, eight in each direction. Table 4 summarizes the results of the 24 -hour count data.

[^4]Table 4. 24-Hr Pedestrian and Bic ycle Count

Ped/ Bike	Direction of travel	$\begin{aligned} & \text { 12AM } \\ & \text {-2AM } \end{aligned}$	$\begin{gathered} \text { 2AM } \\ - \\ 4 A M \end{gathered}$	$\begin{aligned} & \text { 4AM } \\ & -- \\ & \text { 6AM } \end{aligned}$	$\begin{aligned} & \text { GAM } \\ & -\quad \\ & \text { 8AM } \end{aligned}$	$\begin{gathered} \text { 8AM } \\ - \\ \text { 10AM } \end{gathered}$	$\begin{gathered} \text { 10AM } \\ -\quad \\ \text { 12PM } \end{gathered}$	$\begin{gathered} \text { 12PM } \\ -\quad \\ 2 P M \end{gathered}$	$\begin{gathered} \text { 2PM } \\ - \\ \text { 4PM } \end{gathered}$	$\begin{aligned} & \text { 4PM } \\ & - \\ & \text { 6PM } \end{aligned}$	$\begin{gathered} \text { 6PM } \\ - \\ \text { 8PM } \end{gathered}$	$\begin{gathered} \text { 8PM } \\ - \\ 10 \mathrm{PM} \end{gathered}$	$\begin{aligned} & \text { 10PM } \\ & - \\ & \text { 12AM } \end{aligned}$
Ped	Northbound crossing US26	0	0	1	0	2	0	0	4	1	0	0	0
	Southbound crossing US26	0	0	0	3	0	0	1	0	2	2	0	0
	Westbound a long US-26	0	0	0	0	0	0	1	2	0	0	0	0
	Eastbound a long US-26	0	0	0	1	0	0	0	0	0	0	0	0
Bike	Westbound a long US-26	0	0	0	0	0	0	1	0	2	0	0	0
	Eastbound a long US-26	0	0	0	0	0	0	0	1	1	0	3	0

- Mile Points

Study Corridor

- Study Area Intersections

Figure 5

Intersection Operational Results

Operational analyses were conducted for the study intersections as well asthe highway using the Highway Capacity Software (HCS) 2022 to implement the Highway Capacity Manual (HCM). The analyses show that intersections are expected to meet ODOTvolume-to-capacity (v/c) ratio targets in 2050 Thursday and Sunday conditions, but the side street delay may exceed 50 sec onds on Sundays. Side street delay is expected to rema in nearor under 20 sec ondson the weekday (Thursday) peak.

Results for 2030 and 2050 are presented in Table 5 and Table 6 below.

Table 5. 2030 5-Lane Altemative Intersection Operations

Intersection	Critical Movement of Side Sreet	v/c	Meets ODOTv/c Targets?	$\begin{aligned} & \text { Delay } \\ & \text { (sec) } \end{aligned}$	105	Queue length (fit*
2030 (Thursday) Peak Hour- HCS						
East Little Brook Lane/US 26	SBL	0.05	Yes	13.0 s	B	50
Mount Hood Food Frontage/US 26	SBL	0.01	Yes	13.8 s	B	50
Dairy Queen Driveway/US 26	SBR	0.03	Yes	10.6 s	B	50
Mount Hood Roasters Driveway Access/US 26	SBL	0.01	Yes	12.6 s	B	50
East Henry Creek Road/Rd. 20/US 26	NBL	0.03	Yes	14.5 s	B	50
2030 (Sunday) Peak Hour- HCS						
East Little Brook Lane/US 26	SBL	0.16	Yes	30.2 s	D	75
Mount Hood Food Frontage/US 26	SBL	0.14	Yes	37.9 s	E	75
Dairy Queen Driveway/US 26	SBL	0.25	Yes	48.1 s	D	75
Mount Hood Roasters Driveway Access/US 26	SBL	0.05	Yes	20.1 s	C	75
East Henry Creek Road/Rd. 20/US 26	NBL	0.12	Yes	38.5	E	75

*Queue lengths are provided from ODOT's Queue Length Estimation for Two-Way Stop-Controlled Intersections Worksheet, perthe APM. Worksheets are provided in Appendix "G".
** Intersections were reevaluated using Sunday WB volumes not exceeding the $1700 \mathrm{v} / \mathrm{h}$, the two-lane highway capacity. Compa rison (values) show original a nalyses using the WB demand, which exceeds 1700 v / h in these situations. Thursday WB volumes did not exceed capacity for a two-lane highway.

Table 6. 2050 5-Lane Altemative Intersection Operations

Intersection	Critical Movement of Side Street	v/c	Meets ODOTv/c Targets?	$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	Queue length (ft$)^{*}$
2050 (Thursday) Peak Hour- HCS						
East Little Brook Lane/US 26	SBL	0.08	Yes	15.4 s	C	50
Mount Hood Food Frontage/US 26	SBL	0.02	Yes	17.1 s	C	50
Dairy Queen Driveway/US 26	SBL	0.04	Yes	20.0 s	C	50
Mount Hood Roasters Driveway Access/US 26	SBL	0.02	Yes	14.1 s	B	50
East Henry Creek Road/Rd. 20/US 26	NBL	0.06	Yes	19.1 s	C	50
2050 (Sunday) Peak Hour- HCS						
East Little Brook Lane/US 26	SBL	$\begin{gathered} 0.24 \\ (0.41) \end{gathered}$	Yes	$\begin{gathered} 36.7 \mathrm{~s} \\ (>50 \mathrm{~s}) \end{gathered}$	$\begin{gathered} E \\ \text { (F) } \end{gathered}$	$\begin{gathered} 75 \\ (100) \end{gathered}$
Mount Hood Food Frontage/US 26	SBL	$\begin{gathered} 0.19 \\ (0.35) \end{gathered}$	Yes	$\begin{array}{r} 40.8 \mathrm{~s} \\ (>50 \mathrm{~s}) \end{array}$	$\begin{gathered} E \\ \text { (F) } \end{gathered}$	75 (100)
Dairy Queen Driveway/US 26	SBL	$\begin{gathered} 0.34 \\ (0.60) \end{gathered}$	Yes	>50 s	D	100 (100)
Mount Hood Roasters Driveway Access/US 26	SBL	$\begin{gathered} 0.06 \\ (0.10) \end{gathered}$	Yes	$\begin{gathered} 20.4 \mathrm{~s} \\ (29.3 \mathrm{~s}) \end{gathered}$	$\begin{gathered} C \\ \text { (D) } \end{gathered}$	75 (100)
East Henry Creek Road/Rd. 20/US 26	NBL	$\begin{gathered} 0.20 \\ (0.32) \end{gathered}$	Yes	$>50 \mathrm{~s}$	F	75 (100)

*Queve lengths are provided from ODOT's Queve Length Estimation for Two-Way Stop-C ontrolled Intersections Worksheet, perthe APM. Worksheets are provided in Appendix "G".
** Intersections were reevaluated using Sunday WB volumes not exceeding the $1700 \mathrm{v} / \mathrm{h}$, the two-lane highway capacity. Compa rison (values) show original a nalyses using the WB demand, which exceeds 1700 v / h in these situations. Thursday WB volumes did not exceed capacity for a two-lane highway.

The project team also reviewed the delays and queues associated with left-tuming movements from US 26. The analyses show the left tuming movements are expected to stay below 17 seconds. Delays are lower in the westbound direction remaining near or below 10 seconds. Results for the 2030 and 2050 are presented in are summarized in Table 7.

Table 7. Delays and Queues forTuming Traffic from US 26 (5-Lane Altemative)

Intersection	US 26 Movement	5-Iane Altemative	
		Control Delay (s)	Queue length (ft)*
2030 Opening Year Condifions (Sunday)			
East Little Brook Lane/US 26	WBL	9.3 s	50
	EBL	14.2 s	100
Mount Hood Food Frontage/US 26	EBL	14.2 s	100
Dairy Queen Driveway/US 26	EBL	14.6 s	125
Mount Hood Roasters Driveway Access/ US 26	EBL	14.0 s	100
East Henry Creek Road/Rd. 20/US 26	WBL	9.3 s	50
	EBL	13.8 s	100
2050 Opening Year Conditions (Sunday)			
East Little Brook Lane/US 26	WBL	10.3 s (10.3 s)	50 (50)
	EBL	15.0 s(20.1 s)	125 (175)
Mount Hood Food Frontage/US 26	EBL	14.9 s (19.9 s)	125 (175)
Dairy Queen Driveway/US 26	EBL	16.2 s (21.7 s)	150 (200)
Mount Hood Roasters Driveway Access/ US 26	EBL	14.7 s(19.5 s)	125 (175)
East Henry Creek Road/Rd. 20/US 26	WBL	10.3 s (10.3 s)	50 (50)
	EBL	14.6 s (18.9 s)	100 (175)

*Queve lengths are provided from ODOT's Queue Length Estimation for Two-Way Stop-C ontrolled Intersections Worksheet, perthe APM. Worksheets are provided in Appendix "G".
** Intersections were reevaluated using Sunday WB volumes not exceeding the $1700 \mathrm{v} / \mathrm{h}$, the two-lane highway capacity. Comparison (values) show original analyses using the WB demand, which exceeds 1700 v / h in these situations. Thursday WB volumes did not exceed capacity for a two-lane highway.

Segment Operational Results

The project team used the HCM methodology for multila ne highways as implemented in HCS to conduct the segment analysis for the study area roadway. The team analyzed the five-lane multila ne highway facility using the weekday and Sunday peak hours from the seven-day 24-hour tube counts.

The weekday analysis used the 1:45PM-2:45PM Thursday peak hour volumes, and the weekend a nalysis used the 3:00PM-4:00PM Sunday peak hour volumes. Asshown below in Table 8, the 5-lane altemative is antic ipated to be able to accommodate ($\mathrm{v} / \mathrm{c}<1.0$) the projected 2050 demand, even without restrictions due to the two-lane section east of Rhododendron. However, the unconstrained v/c exceeds ODOTs HDM v/c ratio targets for Sunday WB (0.60 for Statewide Freight Routes outside UGBs).

Table 8. 5-Lane Altemative HCS Segment Analysis

West/ East End of Town	Thursoay/ Sunday Peak Hour	Westbound/ Eastbound	HCSv/c	Travel Time $(\mathrm{min})^{1}$	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})^{2}$
2030 Opening Year Conditions					
West End of Town	Thursday	WB	0.21	0.52	7.8
		EB	0.17	0.52	6.5
	Sunday	WB	0.56 (0.56) ${ }^{3}$	$0.52(0.52)^{3}$	$20.7(20.8)^{3}$
		EB	0.20	0.52	7.4
East End of Town	Thursday	WB	0.20	0.52	7.4
		EB	0.17	0.52	6.3
	Sunday	WB	$0.60(0.61)^{3}$	$0.55(0.52)^{3}$	$22.1(22.3)^{3}$
		EB	0.20	0.52	7.5
2050 Future Year Conditions					
West End of Town	Thursday	WB	0.28	0.52	10.3
		EB	0.23	0.52	8.6
	Sunday	WB	$0.56(0.74)^{3}$	$0.52(0.52)^{3}$	$20.7(27.4)^{3}$
		EB	0.26	0.52	9.8
East End of Town	Thursday	WB	0.26	0.52	9.7
		EB	0.22	0.52	8.3
	Sunday	WB	0.56 (0.74) ${ }^{3}$	$0.52(0.52)^{3}$	$20.9(27.7)^{3}$
		EB	0.25	0.52	9.4

1. Travel times were manually calc ulated using a verage speed and coridor length of 0.4 miles.
2. Follower density is unique to two-lane highways.
3. Segments were reevaluated using Sunday WB volumes not exceeding the $1700 \mathrm{v} / \mathrm{h}$, the two-lane highway capacity. Compa rison (values) show original analyses using the WB demand, which exceeds 1700 v / h in these situations. Thursday WB volumes did not exceed capacity for a two-lane highway.

Safety Analysis

As summa rized in Technic al Memora ndum \#4, there were eight reported crashes in the study a rea between 2016 and 2020, with no fatal or severe injuries reported. The calculated segment crash rate is 1.12 crashes per million vehicle miles, which exceedsthe average crash rate for rural principal arterials in Oregon between 2016 and 2022. Four reported crasheswere sideswipe crashes, including two in wet conditions and two in snow/ice conditions. Three of the sideswipe crashes occurred on the east end of Rhododendron where the five-lane roadway transitions to a two-lane roadway. Reported crashes within the study area are shown in Table 9.

Table 9. Study Area Reported Crash History (January 1, 2016-December 31, 2020)

Sudy Area	Collision Type				Severity			Total Crashes	Crash Rate (per MEV)	90^{H} Percentile Crash Pate
	Rear End	Tuming	Sideswipe	FixedObject or OtherObject Collision Type	PDO ${ }^{1}$	NonSevere Injuy	Fatal Severe			
East Little Brook Lane/US 26	0	1	0	0	1	0	0	1	0.04	1.08
Mount Hood Food Frontage/US 26	0	0	0	0	0	0	0	0	0.00	0.48
Non- Intersection Crash: Between Dairy Queen and Mount Hood Foods	0	0	1	0	1	0	0	1	N/A	N/A
Dairy Queen Driveway/US 26	0	0	0	0	0	0	0	0	0.00	0.48
Mount Hood Roasters Driveway Access/US 26	0	0	0	1	0	1	0	1	0.04	0.48
East Henry Creek Road/Rd. 20/US 26	1	1	1	0	0	3	0	3	0.13	1.08
NonIntersection Crash: East End Approach on US 26	0	0	2	0	1	1	0	2	N/A	N/A
Study Area Total	1	2	4	1	3	5	0	8	N/A	N/A

${ }^{1}$ PDO =Property Damage Only
2 MEV = Million Entering Vehicles, calculated using average daily volumes from the 7-day tube counts, supplemented with side street volumes from peak-hour tuming movement counts to estimate total entering vehic les at each intersection.

The 5-Lane Altemative (with Pedestrian Refuge Island) makes the following changes to the cross-section, compared to existing conditions, from a safety perspective:

- Encourages slower speeds, with a target speed of 40 mph , through cross-section changes including na rrowed lanes, installation of curb and sidewalk, and defining access points to create a more urban feel, a lerting drivers of the change in context from a rural comidor. Slowing speeds result in less severe crashes when crashes occur.
- Na rrows travel lanes from 12-ft to 11-ft wide:
- Although there is not a reliable CRF that is applicable for this study's context, narrowing travel lanes have proven effective at reducing speeds and therefore reducing crash severity.
- Convertsthe 6-ft bike shoulderto an 8 - ft buffered bike lane (6-ft bike lane with a 2 - ft buffer):
- ODOTapplies a 47 percent reduction in injury bicycle crashes for installation of a buffered bike lane (in urban areas). ODOTalso applies a 36 percent reduction in all bicycle crashesfor installation of non-buffered bike lanes(shoulder). This indic ates a greatercrash reduction antic ipated with 8 -ft buffered bike lanescompared to 6 -ft shoulderbike lanes, due to the increased separation from vehicles.
- Adds 6 ft sidewalk
- Sidewalk is antic ipated to reduce crashes involving people walking along the roadway by 20 percent.
- Adds a pedestrian crossing with a refuge island and a RRFB
- Installing a RRFB with a pedestrian refuge island isexpected to reduce pedestrian and bike crashes by 56 percent.

On-Street Parking Considerations

On-street parking is not proposed with the 5-Lane Altemative forthe following reasons:

- On-street parking would require additional width in the cross-section, requiring either additional right-of-way or removal of pedestrian and bicycle facilities.
- On-street parking creates additional opportunities for conflict between parking vehic les and bicyc lists.
- When vehic les are using on-street parking, the parked vehic lescan restrict sight distance at intersections and driveways unless adequate distance is placed between the parking areas and driveways.
- Parked vehic les can limit visibility of pedestrianswaiting to cross at c rosswalks, making it more challenging fordrivers to see and slow for crossing pedestrians.
- On-street parking will require a wider cross section, inc reasing pedestrian crossing distances and exposure.
- Based on field observations, extensive off-street parking is provided for private retail a nd commercial uses. For this reason, on-street parking is may be underutilized and contribute to increase operating speeds on US 26 due to widened cross section.

3-Lane Altemative(s)

Two 3-La ne Altematives have been developed with varying active transportation improvements.

3-Lane Altemative (with Pedestrian Refuge Island)

The 3-Lane Altemative (with Pedestrian Refuge Island) reduces the existing cross section from 5-lanes to 3lanes and includesbuffered bike lanes, sidewalks, and a pedestrian refuge island at proposed crossing locations to improve access and increase safety for people c rossing US26. The 3-Lane Altemative (with Pedestrian Refuge Island) cross section is illustrated in Figure 6.

Figure 6: 3-Lane Altemative (with Pedestrian Refuge Island) Cross Section

As illustrated above, the 3-Lane Altemative (with Pedestrian Refuge Island) cross section inc ludes two 12foot travel lanes, one 14 -foot TWLTL (2-foot of shy distance provided adjacent to pedestrian refuge island), and two 9 -foot buffered bike lanes (7 -foot bike lane and 2 -foot buffer). The 3-Lane Altemative (with Pedestrian Refuge Island) reduces the existing pavement width from approximately 74 feet to 56 feet.

No encroachment into the existing 90-foot ROW is proposed and no utility reloc ation or building impacts are a ntic ipated. Table 10 summarizes the 3-Lane Altemative (with Pedestrian Refuge Island) roadway context and cross-sectional dimensions. There may be opportunities to move the sidewalk farther to the back of the ROW a llowing for a wider landscape buffer. Snow storage for this a ltemative would likely occur in the landsc ape buffer between the sidewalk and travel lane.

Table 10. 3-Lane Altemative (with Pedestrian Refuge Island) - Roadway Characteristics

Number oflanes	Lane Width	Curb-toCurb Width	Target Speed**	Posted Speed*ok	Bicycle Facility	Horizontal Clearance	Sidewalk***
3	12 ft travel lanes, 14 ft TWLTL*	56 feet	35 MPH	40 MPH	9 ft	23	6 ft
*TWLTL = Two-Way Left Tum Lane, includes 2-foot shy distance ** Target speed consistent with range identified in ODOTHDM including the BUD *** The posted speed would remain 40 MPH despite the modified cross section. Once the project is constructed, a speed study should be pursued with the goal of a lower posted speed. ${ }^{* * * *}$ Dimension shown in cross section figure includes 6" curb							

Appendix "A" illustrates the ROW impacts and needs for with the 3-Lane Altemative (with Pedestrian Refuge Island) as well as the proposed transition zone.

Enhanced Crossing (3-Lane Altemative (with Pedestrian Refuge Island))

ODOTTraffic Manual
A pedestrian crossing is proposed aspart of the 3-Lane Altemative (with Pedestrian Refuge Island). Ba sed on the cross section illustrated above, number of lanes crossed, an AADT range of 9,000-12,000 vehic les per day ${ }^{7}$, and the antic ipated operating speed ${ }^{8}$, ODOT's Traffic Manual identifies the following trea tments:

Recommended treatments:

- Continental-style crosswalk markings, parking restrictions on crosswalk approach (see Table 310.3-B), lighting according to ODOTTraffic Lighting Design Manual. Crossing waming sign(s) for school crosswalks, midblock crosswalks, or speed $\geq 30 \mathrm{mph}$
- Rectangular rapid flashing beacon (RRFB)

Optional treatments:

- Curb extensions
- Traffic signal or PHB

Transition Zone

Transition zones and accompanying signage and striping modific ations are required as part of the 3-La ne Altematives to effectively manage vehicular speeds approaching Rhododendron (study area). A target speed of 35 mph is identified in the 2023 Highway Design Manual (HDM that reflects the Blueprint for Urban Design [BUD]) based on the Rural Community context. A reduction in speed is desired to meet the goals of this project, but any changes in posted speed must comply with procedures in the ODOTSpeed Zoning Manual and Oregon Administrative Rules.

To the west of the study a rea, the curent roadway cross sections is 5-la nes with a posted speed of 45 mph . A stepped approach transitioning from 45 mph to 35 mph is rec ommended. A 55:1 taper (660 feet) starting immediately east of the existing Zg Zag River bridge is recommended based on ODOT's Traffic Manual (Reference 6). Speed reduction signage should coincide with in-lane pavement markings. Speed feedback signs are recommended to accompany new speed limit signs. The first 35mph speed limit sign should be located approximately $1 / 4$ mile west of the US26/E Little Brook La ne intersection.

To the east of the study area, the current roadway cross section is 2-lanes with a posted speed of 55 mph . A stepped approach transitioning from 55 mph , to 45 mph , to 35 mph is recommended. Speed feedback signs are recommended to accompany new speed limit signs. The first 35 mph speed limit sign should be loc ated approximately $1 / 4$ mile east of the US26/Henry Creek Road intersection.

Appendix "B" illustrates the recommended transition zone, signage, and striping.

[^5]
Summary

Table 11 summarizes the recommended pedestrian crossing facility treatment according to ODOT's Traffic Manual including presence of a pedestrian refuge island, horizontal clearance for freight and over dimensional sized vehicles, as well as bic ycle and pedestrian facility treatments.

Table 11. 3-Lane Altemative (with Pedestrian Refuge Island) - Recommended Facility Treatments

Pedestrian Crossing Facility	Refuge Island	Horizontal Clearance	Target Speed*	Pedestrian Facility	Landscape Bufier**	Bicycle Facility
Rectangular Rapid Flashing Beacon (RRFB)	Yes	23 ft	35 MPH	6-foot sidewalks	5.5 ft	9-foot bike lanes (includes 2-foot buffer)

* Target speed consistent with ranged identified in ODOTHDM
** In less constrained locations, a landscape buffer wider than 6 feet is recommended.

Operational Performance Summary

The study intersections and segments were analyzed for the 3-Lane Altemative under 2030 and 2050 Thursday and Sunday conditions. Traffic volume development and assumptions are discussed in the Operational Performance Summary for the 5-Lane Altemative.

As previously noted, initial a nalyses revealed that the forecast demand during the Sunday 2030 and 2050 peak hours will exceed capacity of the two-lane highway east of Rhododendron in the westbound direction. Based on this, the analysis presented in this section reflects the actual volume that the site will be able to serve. The two-lane section east of Rhododendron will restrict volumes that can access the study area to 1,700 vehic les per hour, resulting in a small unmet demand of less than ten vehic les per hour in the westbound direction during the Sunday 2030 peak hour and a pproximately 550 vehic les per hour in the westbound direction during the Sunday 2050 peak hour.

At intersections, the 3-Lane Altemative is expected to mostly meet ODOTHDM v/c ratio targets under 2030 and 2050 Thursday and Sunday conditions when considering the volume that can be served by the highway. The unconstrained demand to capacity ratiosexceed ODOTHDM v/c ratio ta rgets during the Sunday 2050 peak hour, but the conditions a nalyzed cannot be realized because the westbound demand cannot reach Rhododendron due to the two-lane upstream section. Table 12 provides the side-by-side 2030 operational analysis results between the 5 -lane and 3 -la ne altematives. Table 13 provides the side-byside 2030 and 2050 operational a nalysis results between the 5 -lane and 3-lane altematives. Delays and queues were reviewed fortuming movements from US 26. Delay for movements from US 26 was 16 seconds or less at all study intersections during the 2050 Sunday peak hour, and the estimated queues ranged from a minimum of two vehic lesto a maximum of 6 vehic les during thistime period.

The segment analyses show the westbound direction operating at capacity with a v/c ratio of 1.0 during the 2030 and 2050 Sunday conditions, exceeding ODOTHDM v/c ratio targets. During Thursday conditions, v/c ratios are expected to remain nearorbelow 0.50 during 2030 and 2050 conditions. Table 14 provides the side-by-side 2050 operational a nalysis results between the 5 -la ne and 3-lane altematives. Travel times and density at the east end of Rhododendron are provided in Table 15.
"Appendix C" contains the HCS segment a nd operations software outputs for the 5-la ne a nd 3-La ne Altematives.

February 17, 2023
Page 21
US 26 Rhododendron Design Refinement Plan

Table 12. 2030 Intersection Operations (Side-by-Side 5-lane and 3-Lane Altematives)

	5-Lane Altemative						3-Lane Altemative					
Intersection	Critical Movement of Side Street	v/c	Meets ODOT v/c Targets?	Delay (sec)	LOS	Queue Length (ft)*	Critical Movement of Side Street	v/c	Meets ODOT v/c Targets?	Delay (sec)	LOS	Queue Length (ft)*
Thursday Peak Hour- HCS												
East Little Brook Lane/US 26	SBL	0.05	Yes	13.0 s	B	50	SBL	0.07	Yes	15.2 s	C	50
Mount Hood Food Frontage/US 26	SBL	0.01	Yes	13.8 s	B	50	SBL	0.01	Yes	14.4 s	B	50
Dairy Queen Driveway/US 26	SBR	0.03	Yes	10.6 s	B	50	SBR	0.04	Yes	13.1 s	B	50
Mount Hood Roasters Driveway Access/US 26	SBL	0.01	Yes	12.6 s	B	50	SBL	0.01	Yes	13.8 s	B	50
East Henry Creek Road/Rd. 20/US 26	NBL	0.03	Yes	14.5 s	B	50	NBL	0.04	Yes	16.5 s	C	50

Sunday Peak Hour- HCS												
East Little Brook Lane/US 26	SBL	0.16	Yes	30.2 s	D	75	SBL	0.27	Yes	>50 s	F	75
Mount Hood Food Frontage/US 26	SBL	0.14	Yes	37.9 s	E	75	SBL	0.14	Yes	38.2 s	E	75
Dairy Queen Driveway/US 26	SBL	0.25	Yes	48.1 s	D	75	SBR	0.42	Yes	>50 s	E	100
Mount Hood Roasters Driveway Access/US 26	SBL	0.05	Yes	20.1 s	C	75	SBL	0.10	Yes	36.3 s	E	75
East Henry Creek Road/Rd. 20/US 26	NBL	0.12	Yes	38.5	E	75	NBL	0.19	Yes	$>50 \mathrm{~s}$	F	75

*Queue lengths are provided from ODOT's Queue Length Estimation for Two-Way Stop-Controlled Intersections Worksheet, perthe APM.

Kittelson \& Associates, Inc.

February 17, 2023
Page 22
US 26 Rhododendron Design Refinement Plan
Design Refinement and Altemative Evaluation Memorandum

Table 13. 2050 Intersection Operations (Side-by-Side 5-lane and 3-Lane Altematives)

Intersection	5-Lane Altemative						3-Lane Altemative					
	Side Street Critical Mvmt	v/c	Meets ODOT v/c Targets?	Delay (sec)	LOS	Queue Length (ft)*	Side Street Critical Mvmt	v/c	Meets ODOT v/c Targets?	$\begin{aligned} & \text { Delay } \\ & \text { (sec) } \end{aligned}$	LOS	Queue Length (ft)*
Thursday Peak Hour- HCS												
East Little Brook Lane/US 26	SBL	0.08	Yes	15.4 s	C	50	SBL	0.11	Yes	19.5 s	C	50
Mount Hood Food Frontage/US 26	SBL	0.02	Yes	17.1 s	C	50	SBL	0.02	Yes	17.7 s	C	75
Dairy Queen Driveway/US 26	SBL	0.04	Yes	20.0 s	C	50	SBR	0.07	Yes	16.1 s	C	50
Mount Hood Roasters Driveway Access/US 26	SBL	0.02	Yes	14.1 s	B	50	SBL	0.02	Yes	13.8 s	C	75
East Henry Creek Road/Rd. 20/US 26	NBL	0.06	Yes	19.1 s	C	50	NBL	0.07	Yes	21.2 s	C	50
Sunday Peak Hour- HCS												
East Little Brook Lane/US 26	SBL	$\begin{gathered} 0.24 \\ (0.41) \end{gathered}$	Yes	$\begin{gathered} 36.7 \mathrm{~s} \\ (>50 \mathrm{~s}) \end{gathered}$	$\begin{gathered} E \\ \text { (F) } \end{gathered}$	$\begin{gathered} 75 \\ (100) \end{gathered}$	SBL	$\begin{gathered} 0.41 \\ (0.76) \end{gathered}$	Yes (No)	>50 s	F	$\begin{gathered} 75 \\ (100) \end{gathered}$
Mount Hood Food Frontage/US 26	SBL	$\begin{gathered} 0.19 \\ (0.35) \end{gathered}$	Yes	$\begin{gathered} 40.8 \mathrm{~s} \\ (>50 \mathrm{~s}) \end{gathered}$	$\begin{gathered} E \\ \text { (F) } \end{gathered}$	$\begin{gathered} 75 \\ (100) \end{gathered}$	SBL	$\begin{gathered} 0.22 \\ (0.35) \end{gathered}$	Yes	$\begin{aligned} & 47.5 \mathrm{~s} \\ & (>50 \mathrm{~s}) \end{aligned}$	F	$\begin{gathered} 100 \\ (100) \end{gathered}$
Dairy Queen Driveway/US 26	SBL	$\begin{gathered} 0.34 \\ (0.60) \end{gathered}$	Yes	>50 s	D	$\begin{gathered} 100 \\ (100) \end{gathered}$	SBR	$\begin{gathered} 0.64 \\ (1.11) \end{gathered}$	$\begin{gathered} \text { No } \\ \text { (No) } \end{gathered}$	>50 s	F	$\begin{gathered} 100 \\ (100) \end{gathered}$
Mount Hood Roasters Driveway Access/US 26	SBL	$\begin{gathered} 0.06 \\ (0.10) \end{gathered}$	Yes	$\begin{gathered} 20.4 \mathrm{~s} \\ (29.3 \\ \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { C } \\ \text { (D) } \end{gathered}$	$\begin{gathered} 75 \\ (100) \end{gathered}$	SBL	$\begin{gathered} 0.14 \\ (0.25) \end{gathered}$	Yes	$\begin{aligned} & 41.7 \mathrm{~s} \\ & (>50 \mathrm{~s}) \end{aligned}$	$\begin{gathered} E \\ \text { (F) } \end{gathered}$	$\begin{gathered} 75 \\ (100) \end{gathered}$
East Henry Creek Road/Rd. 20/US 26	NBL	$\begin{gathered} 0.20 \\ (0.32) \end{gathered}$	Yes	>50 s	F	$\begin{gathered} 75 \\ (100) \end{gathered}$	NBL	$\begin{gathered} 0.32 \\ (0.61) \end{gathered}$	Yes (no)	>50 s	F	$\begin{gathered} 75 \\ (100) \end{gathered}$

*Queve lengths are provided from ODOT's Queve Length Estimation for Two-Way Stop-Controlled Intersections Worksheet, perthe APM.
** Intersections were reevaluated using Sunday WB volumes not exceeding the $1700 \mathrm{v} / \mathrm{h}$, the two-lane highway capacity. Companison (values) show original a nalyses using the WB demand, which exceeds $1700 \mathrm{v} / \mathrm{h}$ in these situations. Thursday WB volumes did not exceed capacity for a two-lane highway.

Table 14. 2030 \& 2050 Segment Analysis (Side-by-Side 5-lane and 3-Lane Altematives)

West/ East End of Town	Thursday/ Sunday Peak Hour	Westbound/ Eastbound	5-Lane Altemative HCSv/c	3-Lane Altemative HCSv/c
2030 Opening Year Conditions				
West End of Town	Thursday	WB	0.21	0.38
		EB	0.17	0.32
	Sunday	WB	0.56 (0.56) ${ }^{1}$	1.00 (1.00) ${ }^{1}$
		EB	0.20	0.38
East End of Town	Thursday	WB	0.20	0.35
		EB	0.17	0.31
	Sunday	WB	$0.60(0.61)^{1}$	$1.00(1.01)^{1}$
		EB	0.20	0.37
2050 Future Year Conditions				
West End of Town	Thursday	WB	0.28	0.50
		EB	0.23	0.43
	Sunday	WB	0.56 (0.74) ${ }^{1}$	$1.00(1.32)^{1}$
		EB	0.26	0.51
East End of Town	Thursday	WB	0.26	0.46
		EB	0.22	0.41
	Sunday	WB	0.56 (0.74) ${ }^{1}$	$1.00(1.33){ }^{1}$
		EB	0.25	0.49

1. Segments were reevaluated using Sunday WB volumes not exceeding the $1700 \mathrm{v} / \mathrm{h}$, the two-lane highway capacity. Comparison (values) show original analyses using the WB demand, which exceeds $1700 \mathrm{v} / \mathrm{h}$ in these situations. Thursday WB volumes did not exceed capacity for a two-lane highway.

Table 15. 2030 \& 2050 Travel Time and Density (Side-by-Side 5-lane and 3-Lane Altematives)

West/East End of Town	Thursday/ Sunday Peak Hour	Westbound/ Eastbound	5-Lane Altemative		3-Lane Altemative	
			$\begin{aligned} & \text { Travel Time }{ }^{1} \\ & (\text { min }) \end{aligned}$	Density (pc/mi/ln)	$\begin{aligned} & \text { Travel Time } \\ & (\mathrm{min}) \end{aligned}$	Follower Density ${ }^{2}$ (followers/mi/ln)
2030 Opening YearConditions						
West End of Town	Thursday	WB	0.52	7.8	0.68	12.8
		EB	0.52	6.5	0.66	9.6
	Sunday	WB	$0.52(0.52)^{4}$	20.7 (20.8) ${ }^{4}$	0.64 ($\left.\mathrm{N} / \mathrm{A}^{3}\right)^{4}$	45.5 (N/A3) ${ }^{4}$
		EB	0.52	7.4	0.68	11.5
East End of Town	Thursday	WB	0.52	7.4	0.68	11.5
		EB	0.52	6.3	0.66	9.1
	Sunday	WB	$0.55(0.52)^{4}$	22.1 (22.3) ${ }^{4}$	0.72 (N/A3) ${ }^{4}$	45.5 (N/A3) ${ }^{4}$
		EB	0.52	7.5	0.66	11.4
2050 Future Year Conditions						
West End of Town	Thursday	WB	0.52	10.3	0.69	18.6
		EB	0.52	8.6	0.67	14.1
	Sunday	WB	$0.52(0.52)^{4}$	20.7 (27.4) ${ }^{4}$	0.64 (N/A $\left.{ }^{3}\right)^{4}$	45.5 (N/A3) ${ }^{4}$
		EB	0.52	9.8	0.67	17.7
East End of Town	Thursday	WB	0.52	9.7	0.69	16.8
		EB	0.52	8.3	0.67	13.4
	Sunday	WB	$0.52(0.52)^{4}$	20.9 (27.7) ${ }^{4}$	0.64 (N/A3) ${ }^{4}$	45.5 (N/A3) ${ }^{4}$
		EB	0.52	9.4	0.67	16.7

1. Tra vel times were manually calculated using average speed and comidor length of 0.4 miles.
2. Follower density is unique to two-lane highways.
3. HCS does not provide calculations for segments overcapacity ($\mathrm{v} / \mathrm{c}>1$)
4. Segments were reevaluated using Sunday WB volumes not exceeding the $1700 \mathrm{v} / \mathrm{h}$, the two-lane highway capacity. Comparison (values) show original analyses using the WB demand, which exceeds $1700 \mathrm{v} / \mathrm{h}$ in these situations. Thursday WB volumes did not exceed capacity fora two-lane highway.

The project team also reviewed the delays and queues associated with left-tuming movements from US 26. The analyses show the left tuming movements are expected to stay below 17 seconds. Delaysare lower in the westbound direction remaining near or below 10 sec onds. Results for the 2030 and 2050 are presented in are summarized in Table 16.

Table 16. Delays and Queues for Tuming Traffic from US 26 (3-Lane Altemative)

Intersection	US 26 Movement	3-Lane Altemative	
		Control Delay (s)	Queue length (ft*
2030 Opening YearConditions (Sunday)			
East Little Brook Lane/US 26	WBL	9.3 s	50
	EBL	14.2 s	100
Mount Hood Food Frontage/US 26	EBL	14.2 s	100
Dairy Queen Driveway/US 26	EBL	14.6 s	125
Mount Hood Roasters Driveway Access/ US 26	EBL	14.0 s	100
East Henry Creek Road/Rd. 20/US 26	WBL	9.3 s	50
	EBL	13.8 s	100
2050 Opening Year Conditions (Sunday)			
East Little Brook Lane/US 26	WBL	10.3 s (10.3 s)	50 (50)
	EBL	15.0 s(20.1 s)	125 (175)
Mount Hood Food Frontage/US 26	EBL	14.9 s (19.9 s)	125 (175)
Dairy Queen Driveway/US 26	EBL	16.2 s (21.7 s)	150 (200)
Mount Hood Roasters Driveway Access/ US 26	EBL	14.7 s (19.5 s)	125 (175)
East Henry Creek Road/Rd. 20/US 26	WBL	10.3 s (10.3 s)	50 (50)
	EBL	14.6 s (18.9 s)	100 (175)

*Queve lengths are provided from ODOT's Queve Length Estimation for Two-Wa y Stop-Controlled Intersections Worksheet, per the APM. Worksheets are provided in Appendix "G".
** Intersections were reevaluated using Sunday WB volumes not exceeding the $1700 \mathrm{v} / \mathrm{h}$, the two-lane highway capacity. Comparison (values) show original analyses using the WB demand, which exceeds 1700 v / h in these situations. Thursday WB volumes did not exceed capacity for a two-lane highway.

Disc ussion of Impact of Two-La ne Highway

As noted in the 5-Lane and 3-Lane a nalyses, volume projections in the westbound direction exceed capacity of the two-lane highway east of Rhododendron. In these situations, the a nalysespresented in this memorandum reflect the maximum volume that can reach the site.

ODOTc ompleted an a nalysis to estimate how many hours perday, on average, the westbound highway would exceed capacity. Based on this analysis, shown in Figure 7 below, the westbound traffic is anticipated to exceed capacity an average of 0.3 hours per day in 2050 . The segment is expected to exceed a v/c ratio of 0.6 an average of 0.8 hours perday in 2030 and an average of 1.5 hours perday in 2050.

Figure 7. ODOT's estimate of hours per day that US 26 will exceed capacity in 2030 and 2050

Avg Hours per Day $1700 \mathrm{veh} / \mathrm{hr}(\mathrm{V} / \mathrm{c}=1.0)$

Month	Sun	Mon	Tues	Wed	Thu	Fri	Sat
Jan	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Feb	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mar	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Apt	0.0	0.0	0.0	0.0	0.0	0.0	0.0
May	0.0	0.3	0.0	0.0	0.0	0.0	0.0
Jun	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jul	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aug	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sep	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Month	Sun	Mon	Tues	Wed	Thu	Fif	Sat
Jan	3.5	1.0	0.0	0.0	0.0	0.0	2.0
Feb	05	0.8	0.0	0.0	0.0	0.0	0.5
Mar	24	0.0	0.0	0.0	0.0	0.0	0.4
Apr	1.0	0.0	0.0	0.0	0.0	0.0	0.0
May	0.0	15	0.0	0.0	0.0	0.0	0.0
Jun	1.4	0.0	0.0	0.0	0.0	0.0	0.0
jul	5.3	0.0	0.0	0.0	0.0	0.0	0.0
Aug	5.0	0.0	0.0	0.0	0.0	0.0	0.0
Sep	0.0	1.2	0.0	0.0	0.0	0.0	0.0
Oct	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nov	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dec	1.0	0.4	0.0	0.0	0.3	0.3	1.0

During the time periods that the two-lane highway exceedscapacity, queues will form in the westbound direction on the two-lane section. With the 5-lane altemative, traffic will have an opportunity to begin passing when reaching Rhododendron. This may result in increased speeding and passing through Rhododendron. With the 3-lane altemative, the queues will continue through Rhododendron and begin to dissipate just west of Rhododendron where additional travel lanes are introduced.

Based on the analysis shown above, queues can be expected up to 5.3 hoursper day in the summer months in 2050 and up to 3.5 hours per day in J anuary. Based on the hourly profile of traffic counts conducted for this project, this period of congestion would likely occur during the aftemoon time period. During the shoulder seasons (spring and fall), the time when queueing may be experienced is substantia lly shorter or none.

Note: Although not included in the study, it is hypothesized that the conditionsthat lead to this constraint are present starting at Govemment Camp - Mt. Hood SkiBowl (approximately 8 miles in advance of Rhododendron). The addition of the 0.4 mile 3-la ne section through Rhododendron is not expected to substantially change the overall impact to vehicleson the US 26 comidor due to the constraints to the east of the study area.

Right-Tum Lane Analysis

Kittelson reviewed the right-turn lane criterion provided in Chapter 12 of ODOT's Analysis and Procedures Manual (APM) and the guidance provided in Section 405.1 of the ODOTTraffic Manual.

ODOTAPM Guidance on Right-Tum La nes

The APM describes the right-tum lane evaluation process as follows:

1. "A right turn lane should be installed, if criterion 1 (Volume) or 2 (Crash) or 3 (Special Cases) are met, unless a subsequent evaluation eliminates it as an option; and
2. The Region Traffic Engineer must approve all proposed night-tum la nes on state highways, regardless of funding sources; and
3. The right tum lane complies with Access Ma nagement Spacing Standards; and
4. The right turn lane conforms to applicable local, regional and state plans."

The US 26 Rhododendron study area does not include intersections that meet Criteria 2 or 3. The Dairy Queen driveway 2050 volume forecasts would meet the volume criteria for a right-tum lane, illustrated by Exhibit 12-2 from the APM as shown below. However, as previously noted, the volume projections for the private driveways are conservative and include the same seasonal adjustment and growth factors asthe highway.

Exhibit 12-2 Right Turn Lane Criterion

Note: If there is no right turn lane, a shoulder needs to be provided. If this intersection is in a rural area and is a connection to a public street, a right turn lane is needed,

ODOTTraffic Manual Guidance on Right-Tum Lanes

The Traffic Manual describesthe review and approval process for installing right-tum la nes. Asdisc ussed in the Traffic Manual, trade-offs exist between the benefits of right-tum lanes and the impacts to other safety considerations:
"(01) Adding right-tum la nescan reduce motor vehicle crashes and the time motorists are delayed in traffic. However, right-tum lanes also lead to increased conflicts between motor vehicles and bic yclists as motor vehic les must weave across the path of bicyc les as they enter the right-tum lane when a bike lane transitions from the curb or shoulder to the left of the right-tum lane in advance of the intersection. Righttum lanes a lso lengthen pedestrian crossing distances and left tum movements for vehic les entering the highway from a side street.
(02) Right-tum lanes should not be installed at unc ontrolled intersections in the following situations:
a. High speed highways (posted speeds of 45 mph or greater) with high traffic volumes where there are frequently insuffic ient gaps for side street traffic to judge whether or not they can safely cross or tum onto the main highway,
b. Low speed urban arterials with multi-modal activity such as high bicycle and pedestrian volumes and/or transit use. These can be existing or planned uses,
c. Multiple driveways or side streets are loc ated in the right-tum lane,
d. The skew angle of the side street leads to high speed right tums, or
e. The right-tum lane contributes to a right-of-way constraint that leads to less than adequate bic ycle, pedestrian, or transit facilities."

Based on the review of the APM and Traffic Manual Guidance, right-tum la nes are not a ppropriate within the study area on US 26 in Rhododendron for the following reasons:

- The right-tum lanes would conflict with other driveways and intersections (Item 2c from ODOTTraffic Manual 405.1);
- Multimodal a ctivity oc curs in the project a rea (Item 2b from ODOTTraffic Ma nual 405.1);
- The right-tum lanes would inc rease pedestrian crossing distance;
- The right-tum lanes may lead to increased conflicts between motor vehicles a nd bicyclists as motor vehic les must weave across the path of bicycles as they enter the right-tum la ne when a bike lane transitions from the curb or shoulder to the left of the right-tum lane; and
- Vehicles using the right-tum lanes may block sight distance for vehicles waiting to tum from the driveway/side street.

Safety Analysis

As disc ussed in the five-la ne section summary, there were eight reported crashesbetween 2016 and 2020 within the study area, with no fatalities or severe injuries reported.

The 3-Lane Altemative (with Pedestrian Refuge Island) makes the following changes to the cross-section, compared to existing conditions, from a safety perspective:

- Encourages slower speeds, with a target speed of 35 mph , through cross-section changes inc luding reduced number of lanes and na rower cross-section, installation of curb and sidewalk with landscape buffer, and defining access points to create a more urban feel, alerting drivers of the change in context from a rural comidor. Slowing speeds result in less severe crashes, when crashes do occur. This altemative is expected to be more effective at obtaining target speed compliance,
compared to the 5-La ne Altemative (with Pedestrian Refuge Island). The elimination of the second travellane in each direction also eliminates vehicles accelerating and passing within the community.
- Reduces potential conflict points. With fewer travel la nes, the potential conflict points between vehic les at intersections and driveways is reduced.
- Converts the 6-ft bike shoulder to an 9-ft buffered bike lane (7-ft bike lane with a 2 -ft buffer):
- ODOTapplies a 47 percent reduction in injury bicycle crashes for installation of a buffered bike lane (in urban areas). ODOTalso applies a 36 percent reduction in all bicycle crashes for installation of non-buffered bike lanes (shoulder). This indic ates a greater crash reduction antic ipated with 8 -ft buffered bike lanescompared to 6 -ft shoulder bike lane, due to the increased separation from vehicles.
- Add sidewalks with a landscaped buffer between the roadway.
- Sidewalk is antic ipated to reduce crashes involving people walking along the roadway by 20 percent. The landscape buffer provides further separation between vehicles and people walking, reducing crash risk.
- Addsa pedestrian crossing with a refuge island and a rectangularrapid flashing beacon (RRFB).
- Installing a RRFB with a Pedestrian Refuge Island on a 3-lane roadway is expected to reduce pedestrian crashes by 56 percent.

On-Street Parking Considerations

On-street parking is not proposed with the 3-Lane (with Pedestrian Refuge Island) Altemative for the following reasons:

- On-street parking would require additional width in the cross-section, using space that is alloc ated to the buffer, sidewalk, or bike facility width to stay within the right-of-way.
- On-street parking c reates a dditional opportunities for conflict between parking vehicles and bicyclists.
- When vehic les are using on-street parking, the parked vehic lescan restrict sight distance at intersections and driveways unless adequate distance is placed between the parking areas and driveways. Given the high number of driveways, there may not be adequate space for parking.
- On-street parking will require a wider cross section, increasing pedestrian crossing distances and exposure.
- Pa rked vehic les can also limit visibility of pedestrians waiting to cross at crosswalks, making it more challenging fordrivers to see and slow for crossing pedestrians.
- Based on field observations, extensive off-street parking is provided for private retail a nd commercial uses. For this reason, on-street parking is may be underutilized and contribute to increase operating speeds on US 26 due to widened cross section.

3-Lane Altemative (without Pedestrian Refuge Island)

The 3-La ne Altemative (without Pedestrian Refuge Island) reduces the existing cross section from 5-lanes to 3 -lanes and includes buffered bike lanes and sidewalks to improve a ccess for people traveling along US26. On the south side of US26, a widened sidewalk is proposed as a consistent facility treatment with the planned and ongoing improvements west of Rhododendron a long US26. The 3-Lane Altemative (without Pedestrian Refuge Island) cross section is illustrated in Figure 8.

Figure 8: 3-Lane Altemative (without Pedestrian Refuge Island) Cross Section

As illustrated above, the 3-Lane Altemative (without Pedestrian Refuge Island) cross section includes two 12 -foot travel lanes (2-feet of shy distance provided adjacent to curb), and a 12-foot TWLTL. No pedestrian refuge is provided in order to mainta in widened horizontal clearance for freight. The 3-La ne Altemative (without Pedestrian Refuge Island) reducesthe existing pavement width from approximately 74 feet to 54 feet.

No encroachment into the existing 90 -foot ROW is proposed and no utility relocation or building impacts are a ntic ipated. Table 17 summarizes the 3-Lane Altemative (without Pedestrian Refuge Island) roadway context and cross-sectional dimensions. There may be opportunities to move the multiuse path farther to the back of the ROW allowing for a wider landsc ape buffer. Snow storage for this altemative would likely occur in the landsc ape buffer between the path a nd travel lane.

Table 17. 3-Lane Altemative (without Pedestrian Refuge Island) - Roadway Characteristics

Number of lanes	Lane Widith	Curb- to-Curb Widith	Target Speed**	Posted Speed**	Bicycle Facility***	Horizontal Clearance	Sidewalk***

*TWLTL = Two-Way Left Tum Lane, includes 1-foot shy distance
** Target speed consistent with ranged identified in ODOTHDM
*** "Multiuse path" is intended to provide access to people walking, biking, and rolling
*** The posted speed would remain 40 MPH despite the modified cross section. Once the project is constructed, a speed study should be pursued with the goal of a lower posted speed.

Appendix " A " illustrates the ROW impacts and needs for with the 3-Lane Altemative (without Pedestrian Refuge Island) aswell as the proposed transition zone.

Enhanced Crossing (3-Lane Altemative (without Pedestrian Refuge Island))

ODOTTraffic Manual

A pedestrian crossing is proposed aspart of the 3-Lane Altemative (without Pedestrian Refuge Island). Based on the cross section illustrated above, number of lanes crossed, an AADTrange of 9,000-12,000 vehic les per day ${ }^{9}$, a nd the antic ipated operating speed ${ }^{10}$, ODOT's Traffic Manual identifies the following treatments:

Recommended treatments:

- Continental-style crosswalk markings, parking restrictions on crosswalk approach (see Table 310.3-B), lighting according to ODOTTraffic Lighting Design Manual. Crossing waming sign(s) for school crosswalks, midblock crosswalks, or speed $\geq 30 \mathrm{mph}$
- Pedestrian refuge isla nd (at least 6 feet wide)
- Traffic signal or PHB ${ }^{11}$

Optional trea tments include:

- Curb extensions

Transition Zone

Both 3-Lane Altematives propose the same transition zone geometry, as described in the previous section for the 3-Lane (with Pedestrian Refuge Island) Altemative.

Summary

Table 18 summarizes the recommended pedestrian crossing facility treatment according to ODOT's Traffic Manual, presence of a pedestrian refuge island, horizontal clearance for freight and over dimensional sized vehicles, as well a sbicycle and pedestrian facility treatments.

Table 18. 3-Lane Altemative (without Pedestrian Refuge Island) - Recommended Facility Treatments

Pedestrian Crossing Facility	Refuge Island	Horizontal Clearance	Target Speed	Pedestrian Facility	Iandscape Buffer**	Bicycle Facility
Pedestrian signal	No	54 feet	35 MPH	$6 \mathrm{ft}-10 \mathrm{ft}$	5.5 ft	9-foot bike lanes (includes 2-foot buffer)

[^6]
Operational Performance Summary

The operational performance of the 3-Lane Altemative (without Pedestrian Refuge Island) is the same as that of the 3-Lane Altemative (with Pedestrian Refuge Island), presented in the previous section.

If selected as a preferred altemative, the placement of the Pedestrian Refuge Island will be further evaluated to determine potential impacts on tum lanes which may impact intersection performance.

Safety Analysis

The 3-Lane Altemative (without Pedestrian Refuge Island) makesthe following changesto the cross-section, compared to existing conditions, from a safety perspective:

- Encourages slower speeds, with a target speed of 35 mph , through cross-section changes inc luding reduced number of lanes and na rrower cross-section, installation of curb and sidewalk with landscape buffer, and defining access points to create a more urban feel, alerting drivers of the change in context from a rural comidor. Slowing speeds result in less severe crashes, when crashes occur. This altemative is expected to be more effective at obtaining target speed compliance, compared to the 5 -La ne Altemative (with Pedestrian Refuge Island). The elimination of the sec ond travellane in each direction also eliminates vehicles accelerating and passing within the community.
- Reducespotential conflict points. With fewer travel lanes, the potential conflict points between vehic les at intersections and driveways is reduced.
- Addsa pedestrian crossing with pedestrian signal but no pedestrian refuge island.
- Installing a pedestrian signal is expected to reduce crashes involving people walking and biking by 55 percent.

On-Street Parking Considerations

On-street parking is not proposed with the 3-Lane (without Pedestrian Refuge Isla nd) Altemative for the following reasons:

- On-street parking would require additional width in the cross-section, using space that is allocated to the buffer or sidewalk width to stay within the right-of-way.
- On-street parking c reates a dditional opportunities for conflict between parking vehic les and bic yc lists.
- When vehic les are using on-street parking, the parked vehic lescan restrict sight distance at intersections and driveways unless adequate distance is placed between the parking areas and driveways. Given the high number of driveways, there may not be adequate space for parking.
- On-street parking will require a wider cross section, inc reasing pedestrian crossing distances and exposure.
- Parked vehic les can also limit visibility of pedestrians waiting to cross at crosswalks, making it more challenging fordrivers to see and slow for crossing pedestrians.
- Based on field observations, extensive off-street parking is provided for private retail and commercial uses. For this reason, on-street parking is may be underutilized a nd contribute to increa se operating speeds on US 26 due to widened cross section.

Public Input \& Stakeholder Feedback

Community Drop-in Outreach Event

A community drop-in outreach event washeld on August 11, 2022, in Rhododendron from 2:00 to 4:00pm. The purpose of the community drop-in event was to share information on the project and solicit feedback on primary concems within the project area. Key themes and feedback received are summarized below.

Additional transportation concems and themes voiced at the community drop-in outreach event include:

- Concems of no crosswa lks making it diffic ult to safely cross US 26
- Concems for high-speed vehicles and trucks also making it diffic ult to cross or tum onto US 26
- Observations of inc reased traffic and congestion
- Concems of freight access to adjacent businesses and associated delay
- Support for crosswalks and use of center median as a refuge island, but concem for rectangular rapid flashing beacon (RRFB) orenhanced crossing treatment due to ability to effectively stop vehic les
- Support for reduc ing the total number of lanes a nd slowing traffic down
- Support for speed cameras to enforce speed limits and speed radars for ticketing
- Support for separated bicycle and walking paths

Appendix " D " includes a summary of feedback received as part of the community drop-in outreach event.

Stakeholder Interviews

The project team hasconducted four stakeholder interviewsto-date to gatherfeedback from varying perspectives and representation within the project area. Stakeholder groupsinterviewed to-date include the Clackamas County Pedestrian and Bic ycle Advisory Committee (BPAC), SkiBowl Group of Companies, Clackamas County Traffic Safety Engineer, Clackamas County Mt. Hood Express Human Services Supervisor, and property owner of Alderbrook Lodge as well as Dairy Queen. Key themes and feedback received are summarized below.

- Opportunity to relocate temporary busstop to permanent location; mountain biking is popular activity
- High speeds, lack of pedestrian crossing, overall safety are primary concems
- General support for transition zone occurring before "west" of Rhododendron to calm traffic
- BPAC supportive of on street (buffered bike lanes) and separated bic ycle facilities
- Support for electronic feedback signs and digitaltic keting for exceeding speed limit
- Concem that reduction of travel lanes may impact local business
- Crossing US 26 is a primary concem for businesses and residents; people drive to cross US 26 today
- Support for traffic calming elements to reduce speed and highway noise

Appendix " E " includes the stakeholder interview summaries.

Technic al Workshop

The project tea m conducted a technical workshop on October27, 2022, with ODOTand Clackamas County staff as part of the design refinement and altemative evaluation process. The primary purpose of the technical workshop was to clarify the design altematives including but not limited to cross section elements, widths, presence and location of a pedestrian refuge island, and active transportation facility treatments to help inform the refinement of the altematives.

There are varying opinions about the widths of the va rious design elements associated with the altematives. It should be noted that widertravel lanes and the lack of pedestrian refuge islands do not encourage slower speed and results in longer crossing distancesforvulnerable users. This memorandum reflects the decisions made aspart of feedback received during the technic al workshop. As the project continues to advance in its refinement and design, opportunitiesto slow speeds and reduce the overall cross section width should be explored, consistent with the intended outcomes and comidorvision for Rhododendron.

Key themesand decisionsmade aspart of the technical workshop include:

- Agreement that the 5-lane and 3-lane altematives will not be able to successfully a chieve a target speed of 35 mph ; as a result, the antic ipated minimum operating speed is 40 mph
- A 2-foot off set is recommended when a refuge island is presence; as a result, a 14-foot TWLT lane is recommended when a refuge island is presence
- When a refuge island is not present, a 12-foot TWLT is recommended, consistent with HDM
- Based on feedback from freight and maintenance staff, it was noted to proceed with 12-foot travel lanes for a 3-lane cross section and 11-foot lanes for a 5-lane cross section
- A RRFB cannot be placed without a refuge island (ODOTTraffic Manual)
- A pedestrian signal is recommended compared to a PHB due to motorist recognition
- A crossing should not be located at the eastem extents of the study a rea due to speeding concems and limited sight distance approaching Rhododendron from the east along a downhill
- A crossing should not be located at the westem extents of the study due to limited sight distance Approaching from the east a long the horizontal curve
- ODOT maintenance's preference is for no refuge island
- Sidewalks, bike lanes, multiuse, and buffers are supported for snow removal storage in winter months
- ODOTdoes not have the ability to impose automated speed enforcement

Appendix " F " includes the Tec hnical Workshop summary.

Mobility Advisory Committee (MAC)

The project team presented to the Mobility Advisory Committee (MAC) on Thursday, November 10. The presentation was held as an information only presentation with the prima rily objec tive of early stakeholder communic ation to preview the transition zone altemative.

MAC feedback was positive, with the following themes and input received

- Overall sup port for early stakeholder eng agement
- Interest further exploring freight access to local business
- Recognition of oversized freight route. Vehicles will still need an opportunity to pass large freight.
- Support for slower speeds so freight vehic lescan enter and exit highway more conveniently
- Interest in extending study limits to c reate longer transition zone
- General support for lane reduction; recognition of traffic calming benefits

US 26 Altematives Evaluation

Evaluation Criteria \& Performance Measures

Evaluation criteria and performance measuresidentified in the Evaluation Criteria and Performance Measures Technical Memorandum (Reference 7) were used to assess the trade-offs of each altemative and determine which altemative most closely aligns with the project vision based on the comidor context and needs of intended users.

The comidorvision statement, defined in the Evaluation Criteria and Performance Measures Technical Memorandum is:
"Mt. Hood Highway (US26) connects the Portla nd Metro Area to Central Oregon and serves as Rhod odendron's primary thoroughfare. It provides access to basic necessities and local services such as the post office, groceries, and resta urants. The Highway within the community promotes safe walking, biking, rolling, and driving. This includesfeatures that promote traffic calming a nd reduce travel speeds. The Highway offers safe a nd convenient optionsto ac cess businesses, trails, a nd transit stops. Rhododendron is also a base camp forthose taking transit up the mountain where they can ski, hike and mounta in bike in the Mt Hood National Forest. Rhododendron is vibrant, with unique history, natural beauty, diversity of businesses and transportation facilities that serve all ages and abilities."

The evaluation c riteria below support the Coridor Vision Statement as well as the Refinement Plan intended outcomes:

- Safety: The project provides safety countermeasures that have the potential to reduce the frequency of fatal and severe injury crashes and encourage slower speeds, which reduces crash severity. Performance measures include:
- Multimodal Integration: The project provides an integrated network of comfortable fa cilities a nd services for a variety of travel modes based on the modal priority suggested for the comidor context. The "Rural Community" designation allocates the highest priority to people biking and walking, medium prionity to motorists and freight, and varies in prionity with transit ${ }^{12}$.
- Connectivity: The project provides safe and convenient options to cross US 26, connecting users to the adjacent assets, businesses, trails, and transit stops. Project meets ODOT's operational performance targets (as specified in the Oregon Highway Plan and Highway Design Manual) and continues to serve as an important regional connection addressing "vehicle carrying capacity" needs over Mt. Hood. The project removes ba miers a nd fills gaps for people walking, biking, and taking transit.
- Livability: The project supports the community's vision for increasing the sense of place, allowing for vibrant mix of development, a reduction of travel speeds, and transportation facilities meeting the needs of the "all ages and abilities" population.
- Feasibility: The project has no major design feasibility concems (environmental a nd right-of-way concems) a nd minimizescost relative to the project benefits. Unknowns a re within rea sonable control and can be antic ipa ted through contingency plans. The project is designed with consideration given to on-going and winter maintenance practices.
The scoring scale for each criterion ranges from -1 to +2 , reflecting the extent to which an altemative achievesthe evaluation criteria perthe associated performance measures. Table 19 summarizes the scoring scale for each performance measure.

An evaluation of the altemative designs according to this scale is described below and summa rized in Table 41.

[^7]| Evaluation Criteria | Performance Measures | Scoring | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | -1 | 0 | +1 | +2 |
| Safety | Quantitative: Percentage of antic ipated crash reductions based on CRF | Project is antic ipated to increase crashes. | Project is notantic ipated to reduce crashes. | Project provides a moderate value crash reduction factor. | Project provides a high value crash reduction factor. |
| | Quantita tive: Number of C onflict Points | Project increases the number of conflict points. | Project does not change the number of conflict points. | Project reduces the number of conflict points. | Project significantly reduces the number of conflic t points. |
| | Quantitative: Pedestrian Risk Factor | Project adds a risk factor(s). | Project does not eliminate an existing risk factor. | Project eliminates $\mathbf{1}$ existing risk factor. | Project eliminates $\mathbf{2}$ or more existing risk factors. |
| | Quantitative: Bicyclist Risk Factor | Project addsa risk factor(s). | Project does noteliminate an existing nisk factor. | Project eliminates $\mathbf{1}$ existing nisk factor. | Project eliminates 2 or more existing risk fac tors. |
| | Quantitative: Speed Reduction Effectiveness | Project includes treatments with documented effec tiveness at increasing speeds. | Project includes no treatments with documented effectiveness at speed reduction. | Project inc ludes 1-2 treatments with documented effectiveness at speed reduction. | Project includes 3 or more treatments with documented effectiveness at speed reduction. |
| Multimodal Integration | Qualitative: Consistency with motorist modal considerations for Rural C ommunity context | Project reduces consistency of recommended modal considerations \& prionty for motorist | Project makes no change to consistency of recommended modal considerations \& priority for motorist | Project improves consistency of recommended modal considerations \& prionty for motorist | Project signific antly improves consistency of recommended modal considerations \& priority for motorist |
| | Qualitative: Consistency with freight modal considerations for Rural C ommunity context | Project reduces consistency of recommended modal considerations \& priority for freight | Project makes no change to consistency of recommended modal considerations \& prionity for freight | Project improves consistency of recommended modal considerations \& prionty for freight | Project signific antly improves consistency of recommended modal considerations \& prionity for freight |
| | Qualitative: Consistency with transit modal considerations for Rural Community context | Project reduces consistency of recommended modal considerations \& priority for transit | Project makes no change to consistency of recommended modal considerations \& prionity for transit | Project improves consistency of recommended modal considerations \& prionity for transit | Project significantly improves consistency of recommended modal considerations \& priority for transit |
| | Qualitative: Consistency with bic yc list modal considerations for Rural C ommunity context | Project reduces consistency of recommended modal consid erations \& priority for bic yc list | Project makes no change to consistency of recommended modal considerations \& prionity for bicyclist | Project improves consistency of recommended modal considerations \& prionty for bic yc list | Project signific antly improves consistency of recommended modal considerations \& prionity for bicyclist |
| | Qualitative: Consistency with pedestrian modal considerations for Rural C ommunity context | Project reduces consistency of recommended modal consid erations \& priority for pedestrian | Project makes no change to consistency of recommended modal considerations \& priority for pedestrian | Project improves consistency of recommended modal considerations \& prionty for pedestrian | Project signific antly improves consistency of recommended modal considerations \& priority for pedestrian |
| Connectivity | Quantitative: Consistency with crossing treatment recommendations and ta rget pedestrian crossing spacing for roadway context | Project reduces crossing opportunities and does not meet target pedestrian crossing spacing. | Project does notchange existing crossing opportunities. | Project meets rec ommended crossing treatments and does not meet target pedestrian crossing spacing. | Project meets recommended crossing treatment requirements and meets target pedestrian crossing spacing. |
| | Quantitative: ODOToperational performance targets and regional connectivity ${ }^{1}$. | Project does not meet ODOToperational performance targets and degrades vehic le carying capacity. | Project meets ODOToperational performance targets and degrades vehicle carying capacity. | Project meets ODOToperational performance targets and makes no change to vehicle camying capacity. | Project meets ODOToperational performance targets and improves vehic le carying capacity. |
| | Quantitative: Vehic le Camying Capacity (ORS 366.215) | Project reduces horizontal and/or vertic al clearances of roadway | Project makesno change to horizontal and/or vertic al clearances of roadway | Project makes increase horizontal and/or vertical clearances of roadway | N/A |
| | Qualitative: Ease of access to destination points, community trails, historic places, and transit. | Project creates bariers to ac cess destinations. | Project makes no changesto accessing destinations. | Project improves access to destinations. | Project signific antly improves acc ess to destinations. |
| | Quantitative: Property access points are well defined (egress/ ingress) | N/A | No change is made to existing access points. | Some access points to properties are defined. | All access points are well defined for all properties. |
| Livability | Qualitative: Community response based on open house and interviews | Project creates negative | Project creates mixed responses or neutral responses | Project creates positive responses | Project creates strongly positive responses |
| | Qualitative: Stakeholder response based on open house and interviews | Project creates negative responses | Project creates mixed responses or neutral responses | Project creates positive responses | Project creates strongly positive responses |
| Feasibility | Qualitative: Construction feasibility | Project poses signific ant construction challenges. | Project poses moderate construction challenges. | Project poses minor construction challenges. | Project poses no notable construction challenges. |
| | Quantitative: Expected project costs | Construction costs are comparatively high. | Construction costs are comparatively medium. | Construction costs are comparatively low. | N/A |
| | Qualitative: Ma intenance needs and considerations | Project cannot accommodate ma intenance requirements and increases maintenance needs. | Project accommodates maintenance requirements but increases ma intenance needs. | Project accommodates maintenance requirements and reduces maintenance needs. | N/A |

Kittelson \& Associates, Inc.

Altematives Evaluation

Safety

The Safety criterion considers the altematives opportunity to improve safety a long US 26 through crash reduction factors, number of conflict points, pedestrian and bicycle risk factors, and speed reduction effectiveness.

Where possible, Crash Reduction Factors(CRFs) are noted to indicate a percentage decrease in crashes that may be antic ipated with the implementation of a treatment. Unless otherwise noted, the CRFs presented are obtained from ODOT's approved list of CRFs.

5-Lane Altemative (with Pedestrian Refuge Island)

The 5-La ne Altemative (with Pedestrian Refuge Island) sa fety evaluation is summarized in Table 20.
Table 20. Safety Evaluation of 5-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Percentage of anticipated crash reductions based on CRF	The following elements have documented crash reduction factors: - Sidewalk: 20\% reduction for crashes involving people walking - Pedestrian crossing with RRFB and refuge island: 56% reduction for crashes involving people walking orbiking - Buffered bike lane: 47% reduction in injury bic ycle crashes	```+1 Project providesa moderate value crash reduction factor.```
Number of conflict points	No change in number of conflict points since the number of lanes or driveways is not changing.	Project does not change the number of conflict points.
Pedestrian risk factor sc oring	Project eliminates the lack of sidewalks.	$+1$ Project eliminates 1 existing risk factor.
Bic yc list risk factor scoring	Project eliminatesthe lack of bicycle lanes.	$+1$ Project eliminates 1 existing risk factor.
Speed Reduction Effectiveness	Includes the following elements which contribute to speed reduction: - Change in context to encourage slower speeds - Na rrows travel lanes from 12 ft -to 11-ft	+1 Project includes 1-2 treatments with doc umented effec tiveness at speed reduction.

3-Lane Altemative (with Pedestrian Refuge Island)

The 3-La ne Altemative (with Pedestrian Refuge Island) safety evaluation is summarized in Table 21.
Table 21. Safety Evaluation of 3-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Percentage of antic ipated crash reductions based on CRF	The following elements have documented crash reduction factors: - Sidewalk: 20% reduction for crashes involving people walking - Pedestrian crossing with RRFB and refuge island: 56\% reduction for crashes involving people walking orbiking - Buffered bike lane: 47\% reduction in injury bicycle crashes	$+2$ Project provides a high value crash reduction factor.
Number of conflict points	Reducing the number of through lanes from two to one in each direction substantially reduces the number of conflict points.	$+2$ Project signific antly reduces the number of conflict points.
Pedestrian risk factor sc oring	Project eliminates the lack of sidewalk and reduces the cross-section to less than 4 lanes.	$+2$ Project eliminates 2 or more existing risk factors.
Bic yc list risk factor sc oring	Project eliminates the lack of bicycle lane and reduces the cross-section to less than 4 lanes.	$+2$ Project eliminates 2 or more existing risk factor.
Speed Reduction Effectiveness	Includes the following elements which contribute to speed reduction: - Change in context to encourage slower speeds with curb, sidewalks, bike lanes, a nd refuge island - Reduction in number of lanes - Reduced pavement width	$+2$ Project includes 3 or more treatments with documented effec tiveness at speed reduction.

3-Lane Altemative (without Pedestrian Refuge Island)

The 3-La ne Altemative (without Pedestrian Refuge Isla nd) safety evaluation is summarized in Ta ble 22.
Table 22. Safety Evaluation of 3-Lane Altemative (without Pedestrian Refuge Island)

Performance Measures	Description	Score
Percentage of anticipated crash reductions based on CRF	The following elements have documented crash reduction factors: - Sidewalk: 20\% reduction for crashes involving people walking - Pedestrian signal: 55% reduction in crashes involving people walking or biking - Buffered bike lane: 47% reduction in injury bicycle crashes	+2 Project provides a high value crash reduction factor.
Number of conflict points	Reducing the number of through lanes from two to one in each direction substantially reduces the number of conflict points.	$+2$ Project significantly reduces the number of conflict points.
Pedestrian risk factor scoring	Project eliminates the lack of sidewalk and reduces the cross-section to less than 4 lanes.	$+2$ Project eliminates 2 or more existing risk factors.
Bic yc list risk factor sc oring	Project eliminates the lack of bic ycle lane and reduces the cross-section to less than 4 lanes.	$+2$ Project eliminates 2 or more existing risk fac tor.
Speed Reduction Effectiveness	Includes the following elements which contribute to speed reduction: - Change in context to encourage slower speeds with curb, sidewalks, bike lanes, and pedestrian signal - Reduction in number of lanes - Reduced pavement width	+2 Project includes 3 or more treatments with documented effec tiveness at speed reduction.

Safety Evaluation Summary

Table 23 describes the results of the safety evaluation scores, described above.
Table 23: Safety Evaluation

Altemative	Crash Reduction	Confict Points	Pedestrian Risk Factors	Bicyclist Risk Factors	Speed Reduction Efiectiveness	Total
5-Lane (with Pedestrian Refuge Island)	+1	0	+1	+1	+1	+4
```3-Lane (with Pedestrian Refuge Island)```	+2	+2	+2	+2	+2	+10
3-Lane   (without   Pedestrian   Refuge Island)	+2	+2	+2	+2	+2	+10

## Multimodal Integration

The Multimodal criterion considers how well the altematives meet the needs of the modal prionity set by the identified Rural Community context as part of the Highway Design Manual (HDM) which includesthe BUD. According to the HDM, pedestrian and bicyclist are "high" priority modes, transit "varies", and motorist and freight are "medium."

Table 24 summarizes the recommended design guidance for priority modes based on the Rural Community context identified in the HDM.

Table 24: Recommended Modal Facility Selection for ODOTHighways

Motorist	Freight	Transit	Bicycle	Pedestrian
Start with minimum   widths, widerby   roadway   characteristics	Design decisions should   considerthe presence   and volumes of freight   activity	Design decisions   should considerthe   presence and   volumesof transit   activity	Start with separated   bicycle facility,   consider roadway   characteristics	Continuous and   buffered   sidewalks, sized for   desired use

## 5-Lane Altemative (with Pedestrian Refuge Island)

The 5-La ne Altemative (with Pedestrian Refuge Island) multimodal integration evaluation is summarized in Table 25.

Table 25. Multimodal Evaluation of 5-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Consistency with motorist modal considerations for Rural Community context	Project maintains two lanesin each direction, better defines a ccess points, and separates bicycles and pedestrians from freight and other vehicles. Project na rrows the travel lane widths to the recommended minimum width of 11 feet	0   Project generally aligns with recommended modal considerations \& priority for motorist
Consistency with freight modal considerations for Rural Community context	Freight access is mainta ined with 32 feet of horizontal clearance provided.	$0$   Project makes no change to consistency of recommended modal considerations \& priority forfreight
Consistency with transit modal considerations for Rural Community context	Transit access is improved by the proposed sidewalks and pedestrian crossing; further refinement of the transit stop location and facility will be performed as part of the preferred altemative.	$0$   Project makes no change to consistency of recommended modal considerations \& prionty fortransit
Consistency with bicyclist modal considerations for Rural Community context	Project providesa 2-foot bufferto the existing 6foot bike lane	$+1$   Project improves consistenc y of recommended modal considerations \& priority for bic yc lists
Consistency with pedestrian modal considerations for Rural Community context	For people walking, 6-foot sidewalks a re proposed on both sides of the road, no buffers are provided in locations with development encroaching in ROW. Some buffers may be possible in less constrained sections. A pedestrian refuge island and RRFB a re recommended.	$+1$   Project improves consistency of recommended modal considerations \& priority forpedestrians

## 3-Lane Altemative (with Pedestrian Refuge Island)

The 3-La ne Altemative (with Pedestrian Refuge Isla nd) multimodal integration evaluation is summarized in Table 26.

Table 26. Multimodal Evaluation of 3-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures		Description	Score

## 3-Lane Altemative (without Pedestrian Refuge Island)

The 3-La ne Altemative (without Pedestrian Refuge Isla nd) multimodal integration evaluation is summa nized in Table 27.

Table 27. Multimodal Evaluation of 3-Lane Altemative (with Pedestrian Refuge Island)

| Performance Measures |  | Description |
| :--- | :--- | :--- |$|$| Score |
| :---: | :---: |

## Multimodal Integration Evaluation Summary

Table 28 summarizes the results of the multimodal integration evaluation scores, described above.
Table 28: Multimodal Integration Evaluation

Altemative	Motorist	Freight	Transit	Bicycle	Pedestrian	Total
5-Lane (with   Pedestrian   Refuge Island)	0	0	0	+1	+1	+2
3-Lane   (with Pedestrian   Refuge Island)	-1	-1	+1	+2	+2	+3
3-Lane   (without   Pedestrian   Refuge Island)	-1	-1	+1	+2	+2	+3

## Connectivity

The Connectivity criterion considers how well the altemative improves pedestrian crossings, ability to meet ODOT's operational performance targets and vehicle carrying capacity needs, ease of access to community destinations, a nd property access points (ingress \& egress).

The evaluations below assume that existing access points would be defined with curb in each of the three scenarios since they each include curb and sidewalk or a path. Opportunities may be evaluated for access consolidation, as possible.

## 5-Lane Altemative (with Pedestrian Refuge Island)

The 5-La ne Altemative (with Pedestrian Refuge Island) Connectivity evaluation is summa rized in Ta ble 30.
Table 29. Connectivity Evaluation of 5-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Consistency with crossing treatment recommendations and target pedestrian crossing spacing for roadway context	Project includes a pedestrian refuge island and RRFB, a chieving the target crossing spacing range identified in the HDM.	+2
		Project meets recommended crossing treatments and meets ta rget pedestrian c rossing spacing.
ODOToperational performance targets and regional connectivity	ODOT's HDM v/c ratio targets are anticipated to be met in 2050 scenarios at all intersections, and for all segments when considering constrained volumes.	+1
		Project meets ODOT   operational performance targets.
Vehicle camying capacity (ORS 366.215)	Vehicle camying capacity needs are reduced due to the presence of the pedestrian refuge island	-1
		Project reduces vehicle camying capacity.
East of access to destination points, community trails, historic places, and transit facilities	The sidewalk, bike lanes, pedestrian refuge isla nd and RRFB improves access to community destinations a nd transit. Sidewalks a re limited to 6.5 ft wide and have no buffer, bicyclists must use the buffered bike lanes (no off-street option is a vailable).	$+1$   Project improves access to destinations.
Property access points are well defined (egress/ingress)	Access points will be defined through the installation of curb and sidewalk.	+2
		All access points to properties a re defined.

## 3-Lane Altemative (with Pedestrian Refuge Island)

The 3-La ne Altemative (with Pedestrian Refuge Island) connectivity evaluation is summarized in Table 30.
Table 30. Connectivity Evaluation of 3-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Consistency with crossing treatment recommendations and target pedestrian crossing spacing for roadway context	Project includes a pedestrian refuge island and RRFB, a chieving the target crossing spacing range identified in the HDM.	$+2$   Project meets recommended crossing treatments and meets target pedestrian crossing spacing.
ODOToperational performance targets and regional connectivity	ODOT's HDM v/c ratio targets are not met in 2030 and 2050 during the Sunday peak hours.	$-1$   Project does not meet ODOToperational performance targets.
Vehicle camying capacity (ORS 366.215)	Vehicle camying capacity is reduced due to the presence of the pedestrian refuge island.	$-1$   Project reduces vehicle camying capacity.
East of access to destination points, community trails, historic places, and transit facilities	The pedestrian refuge island, RRFB, and reduced crossing distance greatly improve access to community destinations and transit.	$+2$   Project signific antly improves access to destinations.
Property access points are well defined (egress/ingress)	Access points will be defined through the installation of curb and sidewalk.	+2   All access points to properties are defined.

## 3-Lane Altemative (without Pedestrian Refuge Island)

The 3-La ne Altemative (without Pedestrian Refuge Isla nd) c onnectivity evaluation is summarized in Table 31.
Table 31. Connectivity Evaluation of 3-Lane Altemative (without Pedestrian Refuge Island)

Performance Measures	Description	Score
Consistency with crossing treatment recommendations and target pedestrian crossing spacing for roadway context	Project includes a pedestrian crossing with a pedestrian signal, a chieving the ta rget crossing spacing range identified in the HDM.	$+2$   Project meets recommended crossing treatments and meets target pedestrian crossing spacing.
ODOToperational performance targets and regional connectivity	ODOT's HDM v/c ratio targets are not met in 2030 and 2050 during the Sunday peak hours.	$-1$   Project does not meet ODOToperational performance targets.
Vehicle camying capacity (ORS 366.215)	Vehicle carying capacity is not impacted; no pedestrian refuge included in this altemative	$0$   Project makes no change to vehicle carrying capacity.
East of access to destination points, community trails, historic places, and transit facilities	The pedestrian signal and reduced crossing distance greatly improve access to community destinations and transit.	$+2$   Project signific antly improves access to destinations.
Property access points are well defined (egress/ingress)	Access points will be defined through the installation of curb and shared use path.	$+2$   All access points to properties a re defined.

## Connectivity Evaluation Summary

Table 32 summarizes the results of the connectivity evaluation scores, described above.
Table 32: Connectivity Evaluation

Altemative	Pedestrian Crossing	Operational   Performance	Camying Capacity	Ease of Access	Access Management	Total
5-Lane (with Pedestrian Refuge Island)	+2	+1	-1	+1	+2	+5
3-Lane   (with Pedestrian   Refuge Island)	+2	-1	-1	+2	+2	+4
3-Lane   (without   Pedestrian   Refuge Island)	+2	-1	0	+2	+2	+5

## Livability

The Livability criterion considers how well the altemative is supported by the community and stakeholders.

## 5-Lane Altemative (with Pedestrian Refuge Island)

The 5-La ne Altemative (with Pedestrian Refuge Island) Livability evaluation is summarized in Table 33.
Table 33. Livability Evaluation of 5-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Community response based on open house and interviews	Project was generally not supported based on feedback received aspart of the community drop-in event ${ }^{13}$. Travel speeds and pedestrian crossings were the two primary concems raised by community members. Feedback received from the community suggested that the 5-Lane Altemative (with Pedestrian Refuge Island) would likely not reduce trave speeds and would mainta in the diffic ulty of crossing the roadway due to crossing distance ${ }^{3}$.	Project c reates negative responses.
Stakeholder response based on open house and interviews	The feedback received from the stakeholder interviews was consistent with the community feedback: The 5-Lane Altemative (with Pedestrian Refuge Island) does not address the primary concems of reducing travel speed, improving connectivity for people walking and crossing US26, and improving safety for all.	Project c reates negative responses.

[^8]
## 3-Lane Altemative (with Pedestrian Refuge Island)

The 3-La ne Altemative (with Pedestrian Refuge Isla nd) Livability evaluation is summarized in Table 34.
Table 34. Livability Evaluation of 3-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Community response based on open house and interviews	The 3-Lane Altemative (with Pedestrian Refuge Island) was strongly supported based on feedback received aspart of the community drop-in event³. The pedestrian refuge island was supported and viewed as a signific ant improvement to increase safety for people crossing the road.	$+2$   Project creates significantly positive responses.
Stakeholder response based on open house and interviews	The feedback received from the stakeholder interviews was consistent with the community feedback; however, a stronger preference was voiced forcurb separated bicycle facilities rather than buffered bike lanes from the Clackamas County Bic ycle and Pedestrian Advisory Committee (BPAC).	$+1$   Project c reates positive responses.

## 3-Lane Altemative (without Pedestrian Refuge Island)

The 3-La ne Altemative (with Pedestrian Refuge Isla nd) Livability evaluation is summarized in Table 35.
Table 35. Livability Evaluation of 3-Lane Altemative (without Pedestrian Refuge Island)

Performance Measures	Description	Score
Community response based on open house and interviews	The 3-Lane Altemative (with Pedestrian Refuge Island) was supported based on feedback received aspart of the community drop-in event3. As described above, the desire for a pedestrian refuge isla nd to increase safety for people crossing US 26 was voiced as a strong prionity. The lack of pedestrian refuge island makes the 3-Lane Altemative (without Pedestrian Refuge Island) less supported compared to the 3Lane Altemative (with Pedestrian Refuge Island).	$0$   Project creates mixed responses or neutral responses.
Stakeholder response based on open house and interviews	The feedback received from the stakeholder interviews was consistent with the community feedback; however, a stronger preference was voiced forcurb separated bicycle facilities, as shown in this altemative, rather than buffered bike lanes from the Clackamas C ounty Bic ycle and Pedestrian Advisory Committee (BPAC).	$+2$   Project c reates strongly positive responses.

## Livability Evaluation Summary

Table 36 summarizes the results of the livability evaluation sc ores, described above.

## Table 36: Livability Evaluation

Altemative	Community Support	Sakeholders Support	Total
5-Lane (with Pedestrian   Refuge Island)	-1	-1	$\mathbf{- 2}$
3-Lane (with Pedestrian   Refuge Island)	+2	+1	+3
3-Lane (without   Pedestrian Refuge Island)	0	+2	+2

## Feasibility

The Feasibility criterion considers the construction feasibility (including right-of-way needs) of the altemative as well as the project cost and maintenance considerations.

Planning level cost estimates have not yet been developed. The scores reflect engineering judgment on the relative differences between key elements of the altematives, including pedestrian crossing type and cross-section width. A planning level cost estimate will be developed for the preferred altemative and can be used for ODOTstaff to further develop the basis for altemative cost comparison aspart of next steps.

## 5-Lane Altemative (with Pedestrian Refuge Island)

The 5-Lane Altemative (with Pedestrian Refuge Island) feasibility evaluation is summa rized in Table 37.

Table 37. Feasibility Evaluation of 5-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Construction feasibility	The 5-Lane Altemative (with Pedestrian Refuge Island) widens the overall cross section based on the proposed sidewalk improvements (adding impervious surface) on both sides of the roadway. Based on field observations, sidewalks improvements, particularly on the south side of US26 are likely to require relocation utilities and may impact adjacent buildings (see Appendix "A").	$-1$   Project poses significant construction challenges.
Expected project costs	As a result of antic ipated impacts to adjacent buildings and the wider cross section, the 5 -Lane Altemative (with Pedestrian Refuge Island) is expected to result in a high-level cost compared to the 3-Lane Altematives.	$-1$   Construction costs are comparatively high.
Maintenance needsand considerations	Based on feedback received from ODOT maintenance staff, a raised pedestrian refuge island is not supportive.	$+1$   Project accommodates maintenance requirements and reduces maintenance needs.

## 3-Lane Altemative (with Pedestrian Refuge Island)

The 3-Lane Altemative (with Pedestrian Refuge Island) feasibility evaluation is summa rized in Table 38.
Table 38. Feasibility Evaluation of 3-Lane Altemative (with Pedestrian Refuge Island)

Performance Measures	Description	Score
Construction feasibility	The 3-Lane Altemative (with Pedestrian Refuge Island) reduces the overall cross section, providing curbs on both sides of the roadway. No utility or right-of-way impacts are antic ipated for the 3-Lane Altemative (with Pedestrian Refuge Island).	Project poses minor construction challenges.
Expected project costs	The 3-Lane Altemative (with Pedestrian Refuge Island) is expected to result in a medium-level cost compared to the 5-Lane Altemative (with Pedestrian Refuge Island) and relatively equal compared to the 3-Lane without Pedestrian Refuge Island) due to pedestrian crossing infrastructure	Construction costs are compa ratively medium.
Maintenance needs and considerations	Based on feedback received from ODOT maintenance staff, a reduced cross section and raised pedestrian refuge island are not supported.	Project cannot accommodate maintenance requirements and increases maintenance needs.

## 3-Lane Altemative (without Pedestrian Refuge Island)

The 3-La ne Altemative (without Pedestrian Refuge Island) Feasibility evaluation is summarized in Table 39.
Table 39. Feasibility Evaluation of 3-Lane Altemative (without Pedestrian Refuge Island)

Performance Measures	Description	Score
Construction feasibility	The 3-Lane Altemative (without Pedestrian Refuge Island) reduces the overall cross section, providing curbs on both sides of the roadway. No utility or right-of-way impacts are antic ipated for the 3-Lane Altemative (without Pedestrian Refuge Island).	Project poses minor construction challenges.
Expected project costs	The 3-Lane Altemative (without Pedestrian Refuge Island) is expected to result in a medium-level cost compared to the 5-Lane Altematives and relatively equal compared to the 3-Lane with Pedestrian Refuge Island) due to pedestrian crossing infrastructure	Construction costs are comparatively medium.
Maintenance needsand considerations	Based on feedback received from ODOT maintenance staff, a reduced cross section maintenance of a multiuse path is not supported; however, an altemative without a pedestrian refuge island is supported.	Project accommodates maintenance requirements but increases maintenance needs.

## Feasibility Evaluation Summa ry

Table 40 summarizes the results of the fea sibility evaluation scores, desc ribed above.

Table 40: Feasibility Evaluation

Altemative	Uility/ ROW	Cos**	Maintenance	Total
5-Lane (with Pedestrian   Refuge Island)	-1	-1	+1	$\mathbf{- 1}$
3-Lane (with Pedestrian   Refuge Island)	+1	0	-1	$\mathbf{0}$
3-Lane (without   Pedestrian Refuge   Island)	+1	0	0	$\mathbf{+ 1}$

## Evaluation C riteria Sc oring Summary

Table 41 presents the evaluation criteria and performance measures sc oring summary.

## Table 41: Evaluation Criteria and Performance Measures Sc oring Summary

Evaluation Criteria	Performance Measure	5-Lane Altemative (with Pedestrian Refuge Island)	3-Lane Altemative (with Pedestrian Refuge Island)	3-Lane Altemative (without Pedestrian Refuge Isand)
Safety	Crash Reduction Factors	+1	+2	+2
	Number of Conflict Points	0	+2	+2
	Pedestrian Risk Factors	+1	+2	+2
	Bicycle Risk Factors	+1	+2	+2
	Speed Reduction Effectiveness	+1	+2	+2
Multimodal Integration	Consistency with Motorist Considerations	0	-1	-1
	Consistency with Freight Considerations	0	-1	-1
	Consistency with Transit Considerations	0	+1	+1
	Consistency with Bicycle Considerations	+1	+2	+2
	Consistency with Pedestrian Considerations	+1	+2	+2
Connectivity	Pedestrian Crossing	+2	+2	+2
	Operations Performance	+1	-1	-1
	Camying Capacity	-1	-1	0
	Ease of Access	+1	+2	+2
	Access Management	+2	+2	+2
Livability	Community Feedback	-1	+2	0
	Stakeholder Feedback	-1	+1	+2
Feasibility	Utility/Right-of-Way Impacts	-1	+1	+1
	Cost	-1	0	0
	Maintenance	+1	-1	0
Total Score		8	20	21

[^9]
## US 26 C onsulta nt Team Prelimina ry Rec ommendation

Based on the results of the evaluation criteria, the 3-Lane altematives score highest and are most consistent with the comidorvision and intended outcomes of the project.

Kittelson recommends advancing the 3-lane altemative as the preferred altemative for site plan and
concept development layout
Note: ODOTwill need to verify the acceptance of a pedestrian refuge island before Kittelson begins drafting the site plan layout.

## Next Steps

ODOTproject manager will review the recommended preferred altemative and provide confirmation for the consultant team to advance a single, preferred altemative aspart of the Rhododendron US26 Design Refinement Plan including the site plan layout.

As the project continues to advance in its refinement and design, opportunities to slow speedsand reduce the overall cross section width should be explored, consistent with the intended outcomes and comidor vision for Rhododendron.

Appendix A ROW Impacts \& Needs

3-Lane Altemative without Refuge Isla nd


Scale: $1^{\prime \prime}=40^{\prime}$


Bike Lane: $9^{\prime \prime} \quad \quad^{- \text {TTravel Lane: }}{ }^{12}$
Two-Way

Two-Way $\quad \quad^{-}$Curb Line Mitchell $R d$ | Two-Way |  |
| :---: | :---: |
| Buffer: $\left.5.5^{-}\right\rceil$ | -Left-Turn Lane | (TWLTL): 12' 90'

 Sidewalk: 6




3-Lane Altemative with Refuge Island


## 年

Bike Lane: $9^{\prime} \quad$-Travel Lane: $12^{\prime}$ Buffer: $5.5^{\prime}-7 \quad$ Two-Way Buffer: 5.5 $\quad$ ־ $\quad$-Left-Turn Lane - Curb Line





## 3-Lane (with Pedestrian Refuge Island)

Alternative Cross-Section




## 5-Lane Altemative



## <



5-Lane Alternative Cross-Section




## Appendix B Recommended Transition Zone Signage and Striping



## Appendix C <br> Operations Summary and Software Outputs

## HCS 2022 5-Lane Altematives Segment Ana lysis

*Segment Analysis Results remained the same between HCS 7 and recent version upgrade HCS 2022.


## Vehicle Volumes and Adjustments

Critical and Follow-up Headways

Delay, Queue Length, and Level of Service

Copyright © 2022 University of Florida. All Rights Reserved.





General Information		Site Information	
Analyst	AIR	Intersection	E Little Brook Ln/US 26
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$7 / 21 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	E Little Brook Ln
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Int 1 - Future Sunday 2030 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	T	TR		L	T	TR			LTR				LTR	
Volume (veh/h)	0	11	786	2	0	2	1625	5		2	2	2		2	2	23
Percent Heavy Vehicles (\%)	0	0			0	0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay, Queue Length, and Level of Service
















HCS 2022 3-Lane Altemative Intersection Analysis

## General Information

Analyst	AIR	Intersection	E Little Brook Ln/US 26
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	E Little Brook Ln
Time Analyzed	Thursday	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 1- Future Thursday 2030 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		11	459	3		2	665	8		2	2	3		5	2	18
Percent Heavy Vehicles (\%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	11				2					7				25	
Capacity, c (veh/h)	926				1110					316				379	
v/c Ratio	0.01				0.00					0.02				0.07	
95\% Queue Length, Q ${ }_{95}$ (veh)	0.0				0.0					0.1				0.2	
Control Delay (s/veh)	8.9				8.2					16.6				15.2	
Level of Service (LOS)	A				A					C				C	
Approach Delay (s/veh)		0.2				0.0				16.6				15.2	
Approach LOS		A				A				C				C	

## General Information

Analyst	AIR	Intersection	US 26/Mt Hood Food Fronta
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	Mt Hood Food Frontage
Time Analyzed	Thursday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 2 - Future Thursday 2030 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		2	465				673	15						3		2
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	US 26/Dairy Queen
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	Dairy Queen
Time Analyzed	Thursday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 3 - Future Thursday 2030 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		10	452				659	15						7		18
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	US 26/Mt Hood Roaster Dwy
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	Mt Hood Roaster Dwy
Time Analyzed	Thursday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 4 - Future Thursday 2030 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		2	457				670	2						2		3
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	E Henry Creek Road/US 26
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	E Henry Creek Rd
Time Analyzed	Thursday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 5 - Future Thursday 2030 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		2	442	10		2	652	2		8	2	3		2	2	3
Percent Heavy Vehicles (\%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	2				2					13				7	
Capacity, c (veh/h)	943				1119					326				315	
v/c Ratio	0.00				0.00					0.04				0.02	
95\% Queue Length, $\mathrm{Q}_{95}$ (veh)	0.0				0.0					0.1				0.1	
Control Delay (s/veh)	8.8				8.2					16.5				16.7	
Level of Service (LOS)	A				A					C				C	
Approach Delay (s/veh)		0.0				0.0				16.5				16.7	
Approach LOS		A				A				C				C	

## General Information

Analyst	AIR	Intersection	E Little Brook Ln/US 26
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	E Little Brook Ln
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 1- Future Sunday 2030 - TWLTL		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		11	786	2		2	1625	5		2	2	2		2	2	23
Percent Heavy Vehicles (\%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	11				2					6				27	
Capacity, c (veh/h)	402				840					60				100	
v/c Ratio	0.03				0.00					0.10				0.27	
95\% Queue Length, Q95 (veh)	0.1				0.0					0.3				1.0	
Control Delay (s/veh)	14.2				9.3					71.1				53.7	
Level of Service (LOS)	B				A					F				F	
Approach Delay (s/veh)		0.2				0.0				71.1				53.7	
Approach LOS		A				A				F				F	

## General Information

Analyst	AIR	Intersection	US 26/Mt Hood Food Fronta
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	Mt Hood Food Frontage
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 2 - Future Sunday 2030 - TWLTL		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		4	785				1628	25						14		4
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	US 26/Dairy Queen
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	Dairy Queen
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 3 - Future Sunday 2030 - TWLTL		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		29	759				1587	47						27		54
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	US 26/Mt Hood Roaster Dwy
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2030	North/South Street	Mt Hood Roaster Dwy
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 4 - Future Sunday 2030 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		5	780				1623	5						2		11
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	5													13	
Capacity, c (veh/h)	405													128	
v/c Ratio	0.01													0.10	
95\% Queue Length, $\mathrm{Q}_{95}$ (veh)	0.0													0.3	
Control Delay (s/veh)	14.0													36.3	
Level of Service (LOS)	B													E	
Approach Delay (s/veh)		0.1												6.3	
Approach LOS		A												E	

## General Information

Analyst	AIR	Intersection	E Henry Creek Road／US 26
Agency／Co．	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East／West Street	US 26
Analysis Year	2030	North／South Street	E Henry Creek Rd
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East－West	Analysis Time Period（hrs）	0.25
Project Description	Alt 3＿Int 5－Future Sunday 2030－TWLTL		

Lanes
Site Information

されし入れかい


Major Street：East－West

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume（veh／h）		2	769	5		5	1605	2		11	2	2		2	2	9
Percent Heavy Vehicles（\％）		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade（\％）									0				0			
Right Turn Channelized																
Median Type｜Storage	Left Only								1							
Critical and Follow－up Headways																
Base Critical Headway（sec）		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway（sec）		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow－Up Headway（sec）		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow－Up Headway（sec）		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay，Queue Length，and Level of Service


## General Information

Analyst	AIR	Intersection	E Little Brook Ln/US 26
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	E Little Brook Ln
Time Analyzed	Thursday	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 1- Future Thursday 2050 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		15	605	4		2	877	11		2	2	4		6	2	24
Percent Heavy Vehicles (\%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	15				2					8				32	
Capacity, c (veh/h)	770				979					228				281	
v/c Ratio	0.02				0.00					0.04				0.11	
95\% Queue Length, Q95 (veh)	0.1				0.0					0.1				0.4	
Control Delay (s/veh)	9.8				8.7					21.4				19.5	
Level of Service (LOS)	A				A					C				C	
Approach Delay (s/veh)		0.2				0.0				21.4				19.5	
Approach LOS		A				A				C				C	

## General Information

Analyst	AIR	Intersection	US 26/Mt Hood Food Fronta
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	Mt Hood Food Frontage
Time Analyzed	Thursday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 2 - Future Thursday 2050 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		2	613				887	19						4		2
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	US 26/Dairy Queen
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	Dairy Queen
Time Analyzed	Thursday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 3 - Future Thursday 2050 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		13	596				869	19						9		24
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	US 26/Mt Hood Roaster Dwy
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	Mt Hood Roaster Dwy
Time Analyzed	Thursday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 4 - Future Thursday 2050 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		2	602				883	2						2		4
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	E Henry Creek Road/US 26
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	E Henry Creek Rd
Time Analyzed	Thursday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 5 - Future Thursday 2050 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		2	583	13		2	860	2		11	2	4		2	2	4
Percent Heavy Vehicles (\%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	2				2					17				8	
Capacity, c (veh/h)	789				990					239				227	
v/c Ratio	0.00				0.00					0.07				0.04	
95\% Queue Length, $\mathrm{Q}_{95}$ (veh)	0.0				0.0					0.2				0.1	
Control Delay (s/veh)	9.6				8.6					21.2				21.5	
Level of Service (LOS)	A				A					C				C	
Approach Delay (s/veh)		0.0				0.0				21.2				21.5	
Approach LOS		A				A				C				C	

## General Information

Analyst	AIR	Intersection	E Little Brook Ln/US 26
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	E Little Brook Ln
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt 3_Int 1 - Future Sunday 2050 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume (veh/h)		14	1035	2		2	2141	7		2	2	2		2	2	31
Percent Heavy Vehicles (\%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	US 26/Mt Hood Food Fronta
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	Mt Hood Food Frontage
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt 3_Int 2 - Future Sunday 2050 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		5	1035				2146	33						19		5
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	5													24	
Capacity, c (veh/h)	247													69	
v/c Ratio	0.02													0.35	
95\% Queue Length, $\mathrm{Q}_{95}$ (veh)	0.1													1.3	
Control Delay (s/veh)	19.9													83.5	
Level of Service (LOS)	C													F	
Approach Delay (s/veh)		0.1												83.5	
Approach LOS		A												F	

## General Information

Analyst	AIR	Intersection	US 26/Dairy Queen
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	Dairy Queen
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 3 - Future Sunday 2050 - TWLTL		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		38	1000				2092	61						35		71
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	38												35		71
Capacity, c (veh/h)	253												71		64
v/c Ratio	0.15												0.49		1.11
95\% Queue Length, Q95 (veh)	0.5												2.0		5.6
Control Delay (s/veh)	21.7												97.3		256.3
Level of Service (LOS)	C												F		F
Approach Delay (s/veh)	0.8											203.8			
Approach LOS	A											F			

## General Information

Analyst	AIR	Intersection	US 26/Mt Hood Roaster Dwy
Agency/Co.	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East/West Street	US 26
Analysis Year	2050	North/South Street	Mt Hood Roaster Dwy
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Alt3_Int 4 - Future Sunday 2050 - TWLTL		

Lanes


Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		7	1028				2139	7						2		14
Percent Heavy Vehicles (\%)		0												0		0
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.10												6.40		6.20
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30

Delay, Queue Length, and Level of Service


## General Information

Analyst	AIR	Intersection	E Henry Creek Road／US 26
Agency／Co．	ODOT	Jurisdiction	Rhododendron
Date Performed	$09 / 27 / 2022$	East／West Street	US 26
Analysis Year	2050	North／South Street	E Henry Creek Rd
Time Analyzed	Sunday Peak	Peak Hour Factor	1.00
Intersection Orientation	East－West	Analysis Time Period（hrs）	0.25
Project Description	Alt3＿Int 5－Future Sunday 2050－TWLTL		

Lanes
Site Information

されよ入れかと


Major Street：East－West

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	0		0	1	0
Configuration		L		TR		L		TR			LTR				LTR	
Volume（veh／h）		2	1014	7		7	2115	2		14	2	2		2	2	12
Percent Heavy Vehicles（\％）		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade（\％）									0				0			
Right Turn Channelized																
Median Type｜Storage	Left Only								1							
Critical and Follow－up Headways																
Base Critical Headway（sec）		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway（sec）		4.10				4.10				7.10	6.50	6.20		7.10	6.50	6.20
Base Follow－Up Headway（sec）		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow－Up Headway（sec）		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30

Delay，Queue Length，and Level of Service

Flow Rate，v（veh／h）	2				7					18				16	
Capacity，c（veh／h）	262				688					30				39	
v／c Ratio	0.01				0.01					0.61				0.41	
95\％Queue Length，Q ${ }_{95}$（veh）	0.0				0.0					2.0				1.4	
Control Delay（s／veh）	18.9				10.3					240.7				152.7	
Level of Service（LOS）	C				B					F				F	
Approach Delay（s／veh）		0.0				0.0				240.7				52.7	
Approach LOS		A				A				F				F	

## Segment Analysis Adjusted Volumes

Alternative	Year	Day	Segment End	Original   Volume	Updated Capped   Volumes	
3 In	2030	Sun	West		1708	1700
3 In	2030	Sun	East		1715	1700
					1708	1700
5 In	2030	Sun	West		1715	1700
5 In	2030	Sun	East			
					2251	1700
3 In	2050	Sun	West		2259	1700
3 In	2050	Sun	East			
					2251	1700
5 In	2050	Sun	West		2259	1700
5 In	2050	Sun	East			

HCS 7*
5-Lane Altematives Segment Analysis
Using Origina I Volumes Over Capacity
*Segment Analysis Results remained the same between HCS 7 a nd recent version upgrade HCS 2022.

## HCS7 Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Thursday 1:45-2:45
Project Description	Thursday- West end   Rhododendron	Units	U.S. Customary
Direction 1 Geometric Data	EB	Terrain Type	
Direction 1	Percent Grade, \%	Specific Grade	
Number of Lanes (N), In	Grade Length, mi	-3.00	
Segment Length (L), ft	-	Access Point Density, pts/mi	0.40
Measured or Base Free-Flow Speed	Base	Left-Side Lateral Clearance (LCR), ft	60.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Total Lateral Clearance (TLC), ft	12
Lane Width, ft	12		6
Median Type	TWLTL	50.5	
Free-Flow Speed (FFS), mi/h			

## Direction 1 Adjustment Factors

| Driver Population | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF) | 0.913 |
| :--- | :--- | :--- | :--- | :--- |
| Driver Population SAF | 0.913 | Final Capacity Adjustment Factor (CAF) | 0.898 |
| Driver Population CAF | 0.898 |  |  |
| Direction 1 Demand and Capacity | 551 | Heavy Vehicle Adjustment Factor (fHV) | 0.918 |
| Volume(V) veh/h | 1.00 | Flow Rate (Vp), pc/h/ln | 300 |
| Peak Hour Factor | 7.67 | Capacity (c), pc/h/ln | 1922 |
| Total Trucks, \% | 30 | Adjusted Capacity (cadj), pc/h/ln | 1726 |
| Single-Unit Trucks (SUT), \% | 70 | Volume-to-Capacity Ratio (v/c) | 0.17 |
| Tractor-Trailers (TT), \% |  |  |  |

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	6.5
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	276	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	4.20
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D


| Direction 2 Geometric Data |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Direction 2 | WB | Terrain Type |  |
| Number of Lanes (N), In | 2 | Percent Grade, \% | Specific Grade |
| Segment Length (L), ft | - | Grade Length, mi | 3.00 |
| Measured or Base Free-Flow Speed | Base | Access Point Density, pts/mi | 0.40 |
| Base Free-Flow Speed (BFFS), mi/h | 58.0 | Left-Side Lateral Clearance (LCR), ft | 6 |
| Lane Width, ft | 12 | Total Lateral Clearance (TLC), ft | 12 |
| Median Type | TWLTL |  |  |
| Free-Flow Speed (FFS), mi/h | 51.0 |  |  |

## Direction 2 Adjustment Factors

| Driver Population | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF) | 0.913 |
| :--- | :--- | :--- | :--- | :--- |
| Driver Population SAF | 0.913 | Final Capacity Adjustment Factor (CAF) | 0.898 |
| Driver Population CAF | 0.898 |  |  |
| Direction 2 Demand and Capacity | Heavy Vehicle Adjustment Factor (fHV) | 0.885 |  |
| Volume(V) veh/h | 646 | Flow Rate (Vp), pc/h/ln | 365 |
| Peak Hour Factor | 1.00 | Capacity (c), pc/h/ln | 1932 |
| Total Trucks, \% | 7.56 | Adjusted Capacity (cadj), pc/h/ln | 1735 |
| Single-Unit Trucks (SUT), \% | 30 | Volume-to-Capacity Ratio (v/c) | 0.21 |
| Tractor-Trailers (TT), \% | 70 |  |  |

## Direction 2 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	7.8
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vol),veh/h	276	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	4.20
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D

## HCS7 Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	Sun-West end   Rhododendron	Units	U.S. Customary
Direction 1 Geometric Data	EB	Terrain Type	
Direction 1	Percent Grade, \%	Specific Grade	
Number of Lanes (N), In	Grade Length, mi	-3.00	
Segment Length (L), ft	Access Point Density, pts/mi	0.40	
Measured or Base Free-Flow Speed	Base	Left-Side Lateral Clearance (LCR), ft	30.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Total Lateral Clearance (TLC), ft	12
Lane Width, ft	12		6
Median Type	TWLTL	50.5	
Free-Flow Speed (FFS), mi/h			

## Direction 1 Adjustment Factors

| Driver Population | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF) | 0.913 |
| :--- | :--- | :--- | :--- | :--- |
| Driver Population SAF | 0.913 | Final Capacity Adjustment Factor (CAF) | 0.898 |
| Driver Population CAF | 0.898 |  |  |
| Direction 1 Demand and Capacity | 652 | Heavy Vehicle Adjustment Factor (fHV) | 0.955 |
| Volume(V) veh/h | 1.00 | Flow Rate (Vp), pc/h/ln | 342 |
| Peak Hour Factor | 3.24 | Capacity (c), pc/h/ln | 1922 |
| Total Trucks, \% | 30 | Adjusted Capacity (cadj), pc/h/ln | 1726 |
| Single-Unit Trucks (SUT), \% | 70 | Volume-to-Capacity Ratio (v/c) | 0.20 |
| Tractor-Trailers (TT), \% |  |  |  |

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	7.4
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	326	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	3.09
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C


| Direction 2 Geometric Data |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Direction 2 | WB | Terrain Type |  |
| Number of Lanes (N), In | 2 | Percent Grade, \% | Specific Grade |
| Segment Length (L), ft | - | Grade Length, mi | 3.00 |
| Measured or Base Free-Flow Speed | Base | Access Point Density, pts/mi | 0.40 |
| Base Free-Flow Speed (BFFS), mi/h | 58.0 | Left-Side Lateral Clearance (LCR), ft | 6 |
| Lane Width, ft | 12 | Total Lateral Clearance (TLC), ft | 12 |
| Median Type | TWLTL |  |  |
| Free-Flow Speed (FFS), mi/h | 51.0 |  |  |

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		
Direction 2 Demand and Capacity	1708	Heavy Vehicle Adjustment Factor (fHV)	0.881
Volume(V) veh/h	1.00	Flow Rate (Vp), pc/h/ln	970
Peak Hour Factor	7.81	Capacity (c), pc/h/ln	1932
Total Trucks, \%	Adjusted Capacity (cadj), pc/h/ln	1735	
Single-Unit Trucks (SUT), \%	70	Volume-to-Capacity Ratio (v/c)	0.56
Tractor-Trailers (TT), \%			

## Direction 2 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D ), pc/mi/ln	20.8
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	C
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	326	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	3.09
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	C

## HCS7 Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Thursday 1:45-2:45
Project Description	Thursday- East end   Rhododendron	Units	U.S. Customary
Direction 1 Geometric Data	EB	Terrain Type	
Direction 1	Percent Grade, \%	Specific Grade	
Number of Lanes (N), In	Grade Length, mi	-3.00	
Segment Length (L), ft	-	Access Point Density, pts/mi	0.40
Measured or Base Free-Flow Speed	Base	Left-Side Lateral Clearance (LCR), ft	60.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Total Lateral Clearance (TLC), ft	12
Lane Width, ft	12		6
Median Type	TWLTL	50.5	
Free-Flow Speed (FFS), mi/h			

## Direction 1 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		

## Direction 1 Demand and Capacity

Volume(V) veh/h	532	Heavy Vehicle Adjustment Factor (fHV)	0.918
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	290
Total Trucks, \%	7.65	Capacity (c), pc/h/ln	1922
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1726
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.17

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D ), pc/mi/ln	6.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	266	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	4.18
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	D


| Direction 2 Geometric Data |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Direction 2 | WB | Terrain Type |  |
| Number of Lanes (N), In | 2 | Percent Grade, \% | Specific Grade |
| Segment Length (L), ft | - | Grade Length, mi | 3.00 |
| Measured or Base Free-Flow Speed | Base | Access Point Density, pts/mi | 0.40 |
| Base Free-Flow Speed (BFFS), mi/h | 58.0 | Left-Side Lateral Clearance (LCR), ft | 6 |
| Lane Width, ft | 12 | Total Lateral Clearance (TLC), ft | 12 |
| Median Type | TWLTL |  |  |
| Free-Flow Speed (FFS), mi/h | 51.0 |  |  |

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		
Direction 2 Demand and Capacity	599	Heavy Vehicle Adjustment Factor (fHV)	0.870
Volume(V) veh/h	1.00	Flow Rate (Vp), pc/h/ln	344
Peak Hour Factor	9.51	Capacity (c), pc/h/ln	1932
Total Trucks, \%	Adjusted Capacity (cadj), pc/h/ln	1735	
Single-Unit Trucks (SUT), \%	70	Volume-to-Capacity Ratio (v/c)	0.20
Tractor-Trailers (TT), \%			

## Direction 2 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	7.4
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	266	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	4.18
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D

## HCS7 Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$	
Agency	ODOT	Analysis Year	2030	
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00	
Project Description	Sun-East end   Rhododendron	Units	U.S. Customary	
Direction 1 Geometric Data	EB	Terrain Type		
Direction 1	Percent Grade, \%	Specific Grade		
Number of Lanes (N), In	Grade Length, mi	-3.00		
Segment Length (L), ft	Access Point Density, pts/mi	0.40		
Measured or Base Free-Flow Speed	Base	Left-Side Lateral Clearance (LCR), ft	60.0	
Base Free-Flow Speed (BFFS), mi/h	58.0	Total Lateral Clearance (TLC), ft	12	
Lane Width, ft	12		6	
Median Type	TWLTL	50.5		
Free-Flow Speed (FFS), mi/h				

## Direction 1 Adjustment Factors

Driver Population	All Unfamiliar	Final Speed Adjustment Factor (SAF)	0.863	
Driver Population SAF	0.863	Final Capacity Adjustment Factor (CAF)	0.852	
Driver Population CAF	0.852			
Direction 1 Demand and Capacity				
Volume(V) veh/h	626	Heavy Vehicle Adjustment Factor (fHV)	0.955	
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	328	
Total Trucks, \%	3.24	Capacity (c), pc/h/ln	1900	
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1619	
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.20	

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	43.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D ), pc/mi/ln	7.5
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	313	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	3.07
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	C


| Direction 2 Geometric Data |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Direction 2 | WB | Terrain Type |  |
| Number of Lanes (N), In | 2 | Percent Grade, \% | Specific Grade |
| Segment Length (L), ft | - | Grade Length, mi | 3.00 |
| Measured or Base Free-Flow Speed | Base | Access Point Density, pts/mi | 0.40 |
| Base Free-Flow Speed (BFFS), mi/h | 58.0 | Left-Side Lateral Clearance (LCR), ft | 6 |
| Lane Width, ft | 12 | Total Lateral Clearance (TLC), ft | 12 |
| Median Type | TWLTL |  |  |
| Free-Flow Speed (FFS), mi/h | 51.0 |  |  |

## Direction 2 Adjustment Factors

Driver Population	All Unfamiliar	Final Speed Adjustment Factor (SAF)	0.863
Driver Population SAF	0.863	Final Capacity Adjustment Factor (CAF)	0.852
Driver Population CAF	0.852		
Direction 2 Demand and Capacity	1715	Heavy Vehicle Adjustment Factor (fHV)	0.874
Volume(V) veh/h	1.00	Flow Rate (Vp), pc/h/ln	981
Peak Hour Factor	8.35	Capacity (c), pc/h/ln	1900
Total Trucks, \%	Adjusted Capacity (cadj), pc/h/ln	1619	
Single-Unit Trucks (SUT), \%	70	Volume-to-Capacity Ratio (v/c)	0.61
Tractor-Trailers (TT), \%			

## Direction 2 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	44.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	22.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	C
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	313	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.07
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C

## HCS7 Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$	
Agency	ODOT	Analysis Year	2050	
Jurisdiction	Rhododendron	Time Analyzed	Thursday 1:45-2:45	
Project Description	Thursday- West end   Rhododendron	Units	U.S. Customary	
Direction 1 Geometric Data	EB	Terrain Type		
Direction 1	Percent Grade, \%	Specific Grade		
Number of Lanes (N), In	Grade Length, mi	-3.00		
Segment Length (L), ft	Access Point Density, pts/mi	0.40		
Measured or Base Free-Flow Speed	Base	Left-Side Lateral Clearance (LCR), ft	60.0	
Base Free-Flow Speed (BFFS), mi/h	58.0	Total Lateral Clearance (TLC), ft	12	
Lane Width, ft	12		6	
Median Type	TWLTL	50.5		
Free-Flow Speed (FFS), mi/h				

## Direction 1 Adjustment Factors

| Driver Population | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF) | 0.913 |
| :--- | :--- | :--- | :--- | :--- |
| Driver Population SAF | 0.913 | Final Capacity Adjustment Factor (CAF) | 0.898 |
| Driver Population CAF | 0.898 |  |  |
| Direction 1 Demand and Capacity | 727 | Heavy Vehicle Adjustment Factor (fHV) | 0.918 |
| Volume(V) veh/h | Flow Rate (Vp), pc/h/ln | 396 |  |
| Peak Hour Factor | 1.00 | Capacity (c), pc/h/ln | 1922 |
| Total Trucks, \% | 7.67 | Adjusted Capacity (cadj), pc/h/ln | 1726 |
| Single-Unit Trucks (SUT), \% | 30 | Volume-to-Capacity Ratio (v/c) | 0.23 |
| Tractor-Trailers (TT), \% | 70 |  |  |

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	8.6
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	364	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	4.34
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	D


| Direction 2 Geometric Data |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Direction 2 | WB | Terrain Type |  |
| Number of Lanes (N), In | 2 | Percent Grade, \% | Specific Grade |
| Segment Length (L), ft | - | Grade Length, mi | 3.00 |
| Measured or Base Free-Flow Speed | Base | Access Point Density, pts/mi | 0.40 |
| Base Free-Flow Speed (BFFS), mi/h | 58.0 | Left-Side Lateral Clearance (LCR), ft | 6 |
| Lane Width, ft | 12 | Total Lateral Clearance (TLC), ft | 12 |
| Median Type | TWLTL |  |  |
| Free-Flow Speed (FFS), mi/h | 51.0 |  |  |

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		
Direction 2 Demand and Capacity	851	Heavy Vehicle Adjustment Factor (fHV)	0.885
Volume(V) veh/h	Flow Rate (Vp), pc/h/ln	481	
Peak Hour Factor	1.00	Capacity (c), pc/h/ln	1932
Total Trucks, \%	7.56	Adjusted Capacity (cadj), pc/h/ln	1735
Single-Unit Trucks (SUT), \%	30	Volume-to-Capacity Ratio (v/c)	0.28
Tractor-Trailers (TT), \%	70		

## Direction 2 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D ), pc/mi/ln	10.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	364	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	4.34
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D

## HCS7 Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	Sun-West end   Rhododendron	Units	U.S. Customary
Direction 1 Geometric Data	EB	Terrain Type	
Direction 1	Percent Grade, \%	Specific Grade	
Number of Lanes (N), In	Grade Length, mi	-3.00	
Segment Length (L), ft	Access Point Density, pts/mi	0.40	
Measured or Base Free-Flow Speed	Base	Left-Side Lateral Clearance (LCR), ft	30.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Total Lateral Clearance (TLC), ft	12
Lane Width, ft	12		6
Median Type	TWLTL	50.5	
Free-Flow Speed (FFS), mi/h			

## Direction 1 Adjustment Factors

| Driver Population | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF) | 0.913 |
| :--- | :--- | :--- | :--- | :--- |
| Driver Population SAF | 0.913 | Final Capacity Adjustment Factor (CAF) | 0.898 |
| Driver Population CAF | 0.898 |  |  |
| Direction 1 Demand and Capacity | 860 | Heavy Vehicle Adjustment Factor (fHV) | 0.955 |
| Volume(V) veh/h | 1.00 | Flow Rate (Vp), pc/h/ln | 450 |
| Peak Hour Factor | 3.24 | Capacity (c), pc/h/ln | 1922 |
| Total Trucks, \% | 30 | Adjusted Capacity (cadj), pc/h/ln | 1726 |
| Single-Unit Trucks (SUT), \% | 70 | Volume-to-Capacity Ratio (v/c) | 0.26 |
| Tractor-Trailers (TT), \% |  |  |  |

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	9.8
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vol),veh/h	430	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.23
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C


| Direction 2 Geometric Data |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Direction 2 | WB | Terrain Type |  |
| Number of Lanes (N), In | 2 | Percent Grade, \% | Specific Grade |
| Segment Length (L), ft | - | Grade Length, mi | 3.00 |
| Measured or Base Free-Flow Speed | Base | Access Point Density, pts/mi | 0.40 |
| Base Free-Flow Speed (BFFS), mi/h | 58.0 | Left-Side Lateral Clearance (LCR), ft | 6 |
| Lane Width, ft | 12 | Total Lateral Clearance (TLC), ft | 12 |
| Median Type | TWLTL |  |  |
| Free-Flow Speed (FFS), mi/h | 51.0 |  |  |

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		
Direction 2 Demand and Capacity	2251	Heavy Vehicle Adjustment Factor (fHV)	0.881
Volume(V) veh/h	1.00	Flow Rate (Vp), pc/h/ln	1278
Peak Hour Factor	7.81	Capacity (c), pc/h/ln	1932
Total Trucks, \%	Adjusted Capacity (cadj), pc/h/ln	1735	
Single-Unit Trucks (SUT), \%	70	Volume-to-Capacity Ratio (v/c)	0.74
Tractor-Trailers (TT), \%			

## Direction 2 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D ), pc/mi/ln	27.4
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	D
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vol),veh/h	430	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.23
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C

## HCS7 Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Thursday 1:45-2:45
Project Description	Thursday- East end   Rhododendron	Units	U.S. Customary
Direction 1 Geometric Data	EB	Terrain Type	
Direction 1	Percent Grade, \%	Specific Grade	
Number of Lanes (N), In	Grade Length, mi	-3.00	
Segment Length (L), ft	-	Access Point Density, pts/mi	0.40
Measured or Base Free-Flow Speed	Base	Left-Side Lateral Clearance (LCR), ft	60.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Total Lateral Clearance (TLC), ft	12
Lane Width, ft	12		6
Median Type	TWLTL	50.5	
Free-Flow Speed (FFS), mi/h			

## Direction 1 Adjustment Factors

| Driver Population | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF) | 0.913 |
| :--- | :--- | :--- | :--- | :--- |
| Driver Population SAF | 0.913 | Final Capacity Adjustment Factor (CAF) | 0.898 |
| Driver Population CAF | 0.898 |  |  |
| Direction 1 Demand and Capacity | 701 | Heavy Vehicle Adjustment Factor (fHV) | 0.918 |
| Volume(V) veh/h | 1.00 | Flow Rate (Vp), pc/h/ln | 382 |
| Peak Hour Factor | 7.65 | Capacity (c), pc/h/ln | 1922 |
| Total Trucks, \% | 30 | Adjusted Capacity (cadj), pc/h/ln | 1726 |
| Single-Unit Trucks (SUT), \% | 70 | Volume-to-Capacity Ratio (v/c) | 0.22 |
| Tractor-Trailers (TT), \% |  |  |  |

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	8.3
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	350	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	4.32
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	D


| Direction 2 Geometric Data |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Direction 2 | WB | Terrain Type |  |
| Number of Lanes (N), In | 2 | Percent Grade, \% | Specific Grade |
| Segment Length (L), ft | - | Grade Length, mi | 3.00 |
| Measured or Base Free-Flow Speed | Base | Access Point Density, pts/mi | 0.40 |
| Base Free-Flow Speed (BFFS), mi/h | 58.0 | Left-Side Lateral Clearance (LCR), ft | 6 |
| Lane Width, ft | 12 | Total Lateral Clearance (TLC), ft | 12 |
| Median Type | TWLTL |  |  |
| Free-Flow Speed (FFS), mi/h | 51.0 |  |  |

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		
Direction 2 Demand and Capacity	789	Heavy Vehicle Adjustment Factor (fHV)	0.870
Volume(V) veh/h	1.00	Flow Rate (Vp), pc/h/ln	454
Peak Hour Factor	9.51	Capacity (c), pc/h/ln	1932
Total Trucks, \%	Adjusted Capacity (cadj), pc/h/ln	1735	
Single-Unit Trucks (SUT), \%	70	Volume-to-Capacity Ratio (v/c)	0.26
Tractor-Trailers (TT), \%			

## Direction 2 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	9.7
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vol),veh/h	350	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	4.32
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	D

## HCS7 Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	Sun-East end   Rhododendron	Units	U.S. Customary
Direction 1 Geometric Data	EB	Terrain Type	
Direction 1	Percent Grade, \%	Specific Grade	
Number of Lanes (N), In	Grade Length, mi	-3.00	
Segment Length (L), ft	Access Point Density, pts/mi	0.40	
Measured or Base Free-Flow Speed	Base	Left-Side Lateral Clearance (LCR), ft	30.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Total Lateral Clearance (TLC), ft	12
Lane Width, ft	12		6
Median Type	TWLTL	50.5	
Free-Flow Speed (FFS), mi/h			

## Direction 1 Adjustment Factors

| Driver Population | Mostly Unfamiliar | Final Speed Adjustment Factor (SAF) | 0.913 |
| :--- | :--- | :--- | :--- | :--- |
| Driver Population SAF | 0.913 | Final Capacity Adjustment Factor (CAF) | 0.898 |
| Driver Population CAF | 0.898 |  |  |
| Direction 1 Demand and Capacity | 825 | Heavy Vehicle Adjustment Factor (fHV) | 0.955 |
| Volume(V) veh/h | 1.00 | Flow Rate (Vp), pc/h/ln | 432 |
| Peak Hour Factor | 3.24 | Capacity (c), pc/h/ln | 1922 |
| Total Trucks, \% | 30 | Adjusted Capacity (cadj), pc/h/ln | 1726 |
| Single-Unit Trucks (SUT), \% | 70 | Volume-to-Capacity Ratio (v/c) | 0.25 |
| Tractor-Trailers (TT), \% |  |  |  |

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	9.4
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vol),veh/h	412	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.21
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C


| Direction 2 Geometric Data |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Direction 2 | WB | Terrain Type |  |
| Number of Lanes (N), In | 2 | Percent Grade, \% | Specific Grade |
| Segment Length (L), ft | - | Grade Length, mi | 3.00 |
| Measured or Base Free-Flow Speed | Base | Access Point Density, pts/mi | 0.40 |
| Base Free-Flow Speed (BFFS), mi/h | 58.0 | Left-Side Lateral Clearance (LCR), ft | 6 |
| Lane Width, ft | 12 | Total Lateral Clearance (TLC), ft | 12 |
| Median Type | TWLTL |  |  |
| Free-Flow Speed (FFS), mi/h | 51.0 |  |  |

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		
Direction 2 Demand and Capacity	Heavy Vehicle Adjustment Factor (fHV)	0.874	
Volume(V) veh/h	2259	Flow Rate (Vp), pc/h/ln	1292
Peak Hour Factor	1.00	Capacity (c), pc/h/ln	1932
Total Trucks, \%	8.35	Adjusted Capacity (cadj), pc/h/ln	1735
Single-Unit Trucks (SUT), \%	30	Volume-to-Capacity Ratio (v/c)	0.74
Tractor-Trailers (TT), \%	70		

## Direction 2 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D ), pc/mi/ln	27.7
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	D
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	412	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.21
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C

## Segment Analysis Adjusted Volumes

Alternative	Year	Day	Segment End	Original Volume	Updated Capped Volumes
3 ln	2030	Sun	West	1708	1700
3 In	2030	Sun	East	1715	1700
5 In	2030	Sun	West	1708	1700
5 ln	2030	Sun	East	1715	1700
3 In	2050	Sun	West	2251	1700
3 In	2050	Sun	East	2259	1700
5 In	2050	Sun	West	2251	1700
5 ln	2050	Sun	East	2259	1700

HCS 2022
5-Lane Altematives Segment Analysis (Sunday Only)
Using volumes not exceeding the Capacity (1700 veh)

## HCS Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	Sun-West end   Rhododendron	Units	U.S. Customary

## Direction 1 Geometric Data

Direction 1	EB		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	5280	Percent Grade, \%	-3.00
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.40
Base Free-Flow Speed (BFFS), mi/h	58.0	Access Point Density, pts/mi	30.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	TWLTL	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	50.5		

## Direction 1 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		

## Direction 1 Demand and Capacity

Volume (V) veh/h	652	Heavy Vehicle Adjustment Factor (fHV)	0.955
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	342
Total Trucks, \%	3.24	Capacity (c), pc/h/ln	1922
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1726
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.20

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	7.4
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL), veh/h	326	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	3.09
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	C

Direction 2 Geometric Data

Direction 2	WB	Terrain Type	Specific Grade
Number of Lanes (N), In	2	Percent Grade, \%	3.00
Segment Length (L), ft	5280	Grade Length, mi	0.40
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	28.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	TWLTL		
Free-Flow Speed (FFS), mi/h	51.0		

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		

Direction 2 Demand and Capacity

Volume (V) veh/h	1700	Heavy Vehicle Adjustment Factor (fHV)	0.881
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	965
Total Trucks, \%	7.81	Capacity (c), pc/h/ln	1932
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1735
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.56

Direction 2 Speed and Density

Lane Width Adjustment (flw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	20.7
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	C
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (voL), veh/h	326	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	3.09
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	C

[^10]
## HCS Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	Sun-East end   Rhododendron	Units	U.S. Customary

## Direction 1 Geometric Data

Direction 1	EB		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	5280	Percent Grade, \%	-3.00
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.40
Base Free-Flow Speed (BFFS), mi/h	58.0	Access Point Density, pts/mi	30.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	TWLTL	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	50.5		

## Direction 1 Adjustment Factors

Driver Population	All Unfamiliar	Final Speed Adjustment Factor (SAF)	0.863
Driver Population SAF	0.863	Final Capacity Adjustment Factor (CAF)	0.852
Driver Population CAF	0.852		

## Direction 1 Demand and Capacity

Volume (V) veh/h	626	Heavy Vehicle Adjustment Factor (fHV)	0.955
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	328
Total Trucks, \%	3.24	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1619
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.20

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	43.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	7.5
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vol), veh/h	313	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	3.07
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C

Direction 2 Geometric Data

Direction 2	WB	Terrain Type	Specific Grade
Number of Lanes (N), In	2	Percent Grade, \%	3.00
Segment Length (L), ft	5280	Grade Length, mi	0.40
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	28.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	TWLTL		
Free-Flow Speed (FFS), mi/h	51.0		

## Direction 2 Adjustment Factors

Driver Population	All Unfamiliar	Final Speed Adjustment Factor (SAF)	0.863
Driver Population SAF	0.863	Final Capacity Adjustment Factor (CAF)	0.852
Driver Population CAF	0.852		

Direction 2 Demand and Capacity

Volume (V) veh/h	1700	Heavy Vehicle Adjustment Factor (fHV)	0.874
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	972
Total Trucks, \%	8.35	Capacity (c), pc/h/ln	1900
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1619
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.60

Direction 2 Speed and Density

Lane Width Adjustment (flw)	0.0	Average Speed (S), mi/h	44.0
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	22.1
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	C
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (voL), veh/h	313	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.07
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C

[^11]
## HCS Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	Sun-West end   Rhododendron	Units	U.S. Customary

## Direction 1 Geometric Data

Direction 1	EB		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	5280	Percent Grade, \%	-3.00
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.40
Base Free-Flow Speed (BFFS), mi/h	58.0	Access Point Density, pts/mi	30.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	TWLTL	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	50.5		

## Direction 1 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		

## Direction 1 Demand and Capacity

Volume (V) veh/h	860	Heavy Vehicle Adjustment Factor (fHV)	0.955
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	450
Total Trucks, \%	3.24	Capacity (c), pc/h/ln	1922
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1726
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.26

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	9.8
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL})$, veh/h	430	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	3.23
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	C

Direction 2 Geometric Data

Direction 2	WB	Terrain Type	Specific Grade
Number of Lanes (N), In	2	Percent Grade, \%	3.00
Segment Length (L), ft	5280	Grade Length, mi	0.40
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	28.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	TWLTL		
Free-Flow Speed (FFS), mi/h	51.0		

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		

Direction 2 Demand and Capacity

Volume (V) veh/h	1700	Heavy Vehicle Adjustment Factor (fHV)	0.881
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	965
Total Trucks, \%	7.81	Capacity (c), pc/h/ln	1932
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1735
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.56

Direction 2 Speed and Density

Lane Width Adjustment (flw)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	20.7
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	C
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (voL), veh/h	430	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.23
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C

[^12]
## HCS Multilane Highway Report

## Project Information

Analyst	AIR	Date	$7 / 24 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	Sun-East end   Rhododendron	Units	U.S. Customary

## Direction 1 Geometric Data

Direction 1	EB		
Number of Lanes (N), In	2	Terrain Type	Specific Grade
Segment Length (L), ft	5280	Percent Grade, \%	-3.00
Measured or Base Free-Flow Speed	Base	Grade Length, mi	0.40
Base Free-Flow Speed (BFFS), mi/h	58.0	Access Point Density, pts/mi	30.0
Lane Width, ft	12	Left-Side Lateral Clearance (LCR), ft	6
Median Type	TWLTL	Total Lateral Clearance (TLC), ft	12
Free-Flow Speed (FFS), mi/h	50.5		

## Direction 1 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		

## Direction 1 Demand and Capacity

Volume (V) veh/h	825	Heavy Vehicle Adjustment Factor (fHV)	0.955
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	432
Total Trucks, \%	3.24	Capacity (c), pc/h/ln	1922
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1726
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.25

## Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.1
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	9.4
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	7.5		

## Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL})$, veh/h	412	Effective Speed Factor (St)	4.17
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	18	Bicyle LOS Score (BLOS)	3.21
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	24	Bicycle Level of Service (LOS)	C

Direction 2 Geometric Data

Direction 2	WB	Terrain Type	Specific Grade
Number of Lanes (N), In	2	Percent Grade, \%	3.00
Segment Length (L), ft	5280	Grade Length, mi	0.40
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	28.0
Base Free-Flow Speed (BFFS), mi/h	58.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	TWLTL		
Free-Flow Speed (FFS), mi/h	51.0		

## Direction 2 Adjustment Factors

Driver Population	Mostly Unfamiliar	Final Speed Adjustment Factor (SAF)	0.913
Driver Population SAF	0.913	Final Capacity Adjustment Factor (CAF)	0.898
Driver Population CAF	0.898		

Direction 2 Demand and Capacity

Volume (V) veh/h	1700	Heavy Vehicle Adjustment Factor (fHV)	0.874
Peak Hour Factor	1.00	Flow Rate (Vp), pc/h/ln	972
Total Trucks, \%	8.35	Capacity (c), pc/h/ln	1932
Single-Unit Trucks (SUT), \%	30	Adjusted Capacity (cadj), pc/h/ln	1735
Tractor-Trailers (TT), \%	70	Volume-to-Capacity Ratio (v/c)	0.56

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	46.6
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	20.9
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	C
Access Point Density Adjustment (fA)	7.0		

## Direction 2 Bicycle LOS

Flow Rate in Outside Lane (voL), veh/h	412	Effective Speed Factor (St)	4.17
Effective Width of Volume (Wv), ft	18	Bicyle LOS Score (BLOS)	3.21
Average Effective Width (We), ft	24	Bicycle Level of Service (LOS)	C

[^13]
## Segment Analysis Adjusted Volumes

Alternative	Year	Day	Segment End	Original Volume	Updated Capped   Volumes
3 In	2030	Sun	West	1708	1700
3 ln	2030	Sun	East	1715	1700
5 In	2030	Sun	West	1708	1700
5 ln	2030	Sun	East	1715	1700
3 In	2050	Sun	West	2251	1700
3 In	2050	Sun	East	2259	1700
5 In	2050	Sun	West	2251	1700
5 ln	2050	Sun	East	2259	1700

HCS 2022
3-Lane Altematives Segment Analysis (2030
Using Origina I Volumes Over Capacity

## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Thursday $1: 45-2: 45$
Project Description	3 Ln Alt_Thur-West end of   Rhod -WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts $/ \mathrm{mi}$	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	646	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.56
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.38

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	3.58097	Speed Power Coefficient (p)	0.41622
PF Slope Coefficient (m)	-1.57529	PF Power Coefficient (p)	0.66030
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	12.8
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	35.0

## Vehicle Results

Average Speed, mi/h	35.0	Percent Followers, \%	69.3
Segment Travel Time, minutes	0.68	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	12.8
Vehicle LOS	D		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	646	Bicycle Effective Width, ft	23
Bicycle LOS Score	4.49	Bicycle Effective Speed Factor	4.17
Bicycle LOS	D		

## Facility Results

$\mathbf{T}$	VMT   veh-mi/p	VHD   veh-h/p	Follower Density, followers/   $\mathbf{m i / l n}$	LOS
1	64	0.14	12.8	$D$

Copyright © 2022 University of Florida. All Rights Reserved.

## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Thursday $1: 45-2: 45$
Project Description	3 Ln Alt_Thur-West end of   Rhod - EB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts $/ \mathrm{mi}$	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	551	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.67
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.32

## Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	2.56792	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46056	PF Power Coefficient (p)	0.67887
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	9.6
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi/h
1	Tangent	2100	-	-	35.9

## Vehicle Results

Average Speed, mi/h	35.9	Percent Followers, \%	62.3
Segment Travel Time, minutes	0.66	Follower Density (FD), followers/mi/ln	9.6
Vehicle LOS	C		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	551	Bicycle Effective Width, ft	23
Bicycle LOS Score	4.45	Bicycle Effective Speed Factor	4.17
Bicycle LOS	D		

## Facility Results



## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-West end of   Rhod -WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	1708	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.81
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	1.00

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	75.0
Speed Slope Coefficient (m)	0.00000	Speed Power Coefficient (p)	0.00000
PF Slope Coefficient (m)	0.00000	PF Power Coefficient (p)	0.00000
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	75.0

## Vehicle Results

| Average Speed, mi/h | 75.0 | Percent Followers, \% | 0.0 |
| :--- | :--- | :--- | :--- | :--- |
| Segment Travel Time, minutes | 0.00 | Follower Density (FD), followers/mi/ln | 0.0 |
| Vehicle LOS | F |  |  |
| Bicycle Results | 0 | Pavement Condition Rating | 4 |
| Percent Occupied Parking | 1708 | Bicycle Effective Width, ft | 23 |
| Flow Rate Outside Lane, veh/h | 5.06 | Bicycle Effective Speed Factor | 4.17 |
| Bicycle LOS Score | E |  |  |
| Bicycle LOS |  |  |  |

## Facility Results

$\mathbf{T}$	VMT   veh-mi/p	VHD   veh-h/p	Follower Density, followers/   $\mathbf{m i / l n}$	LOS
1	0	0.00	0.0	$A$

[^14]
## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-West end of   Rhod-EB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	652	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	3.24
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.38

## Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	37.9
Speed Slope Coefficient (m)	2.57592	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46135	PF Power Coefficient (p)	0.67890
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	12.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	35.9

## Vehicle Results

Average Speed, mi/h	35.9	Percent Followers, \%	66.5	
Segment Travel Time, minutes	0.67	Follower Density (FD), followers/mi/ln	12.1	
Vehicle LOS	D			
Bicycle Results				
Percent Occupied Parking	Pavement Condition Rating	4		
Flow Rate Outside Lane, veh/h	652	Bicycle Effective Width, ft	23	
Bicycle LOS Score	3.33	Bicycle Effective Speed Factor	4.17	
Bicycle LOS	C			

## Facility Results

T	VMT   $\mathbf{v e h}-\mathbf{m i} / \mathbf{p}$	VHD   $\mathbf{v e h}-\mathbf{h} / \mathbf{p}$	Follower Density, followers/   $\mathbf{m i} / \mathbf{l n}$	LOS
1	65	0.10	12.1	D

## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Thursday $1: 45-2: 45$
Project Description	3 Ln Alt_Thur-East end of   Rhod - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	599	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	9.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.35

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	3.58619	Speed Power Coefficient (p)	0.41622
PF Slope Coefficient (m)	-1.57320	PF Power Coefficient (p)	0.66121
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	11.5
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	35.0

## Vehicle Results

Average Speed, mi/h	35.0	Percent Followers, \%	67.4
Segment Travel Time, minutes	0.68	Follower Density (FD), followers/mi/ln	11.5
Vehicle LOS	D		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	599	Bicycle Effective Width, ft	23
Bicycle LOS Score	5.09	Bicycle Effective Speed Factor	4.17
Bicycle LOS	E		

## Facility Results



## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Thursday $1: 45-2: 45$
Project Description	3 Ln Alt_Thur-East end of   Rhod - EB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	532	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.70
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.31

## Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	2.56787	Speed Power Coefficient $(\mathrm{p})$	0.41674
PF Slope Coefficient (m)	-1.46055	PF Power Coefficient (p)	0.67887
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	9.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	35.9

## Vehicle Results

Average Speed, mi/h	35.9	Percent Followers, \%	61.4
Segment Travel Time, minutes	0.66	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	9.1
Vehicle LOS	C		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	532	Bicycle Effective Width, ft	23
Bicycle LOS Score	4.44	Bicycle Effective Speed Factor	4.17
Bicycle LOS	D		

## Facility Results



## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-East end of   Rhod - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	1715	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	8.35
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	1.01

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	75.0
Speed Slope Coefficient (m)	0.00000	Speed Power Coefficient (p)	0.00000
PF Slope Coefficient (m)	0.00000	PF Power Coefficient (p)	0.00000
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	75.0

## Vehicle Results

Average Speed, mi/h	75.0	Percent Followers, \%	0.0	
Segment Travel Time, minutes	0.00	Follower Density (FD), followers/mi/ln	0.0	
Vehicle LOS	F			
Bicycle Results				
Percent Occupied Parking	0	Pavement Condition Rating	4	
Flow Rate Outside Lane, veh/h	1715	Bicycle Effective Width, ft	23	
Bicycle LOS Score	5.24	Bicycle Effective Speed Factor	4.17	
Bicycle LOS	E			

## Facility Results



## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-East end of   Rhod-EB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	626	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	3.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.37

## Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	37.9
Speed Slope Coefficient (m)	2.57635	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46140	PF Power Coefficient (p)	0.67891
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	11.4
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	35.9

## Vehicle Results

Average Speed, mi/h	35.9	Percent Followers, \%	65.5	
Segment Travel Time, minutes	0.66	Follower Density (FD), followers/mi/ln	11.4	
Vehicle LOS	D			
Bicycle Results				
Percent Occupied Parking	0	Pavement Condition Rating	4	
Flow Rate Outside Lane, veh/h	626	Bicycle Effective Width, ft	23	
Bicycle LOS Score	3.25	Bicycle Effective Speed Factor	4.17	
Bicycle LOS	C			

## Facility Results

$\mathbf{T}$	VMT   veh-mi/p	VHD   veh-h/p	Follower Density, followers/   $\mathbf{m i / l n}$	LOS
1	62	0.09	11.4	$D$

[^15]
## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Thursday $1: 45-2: 45$
Project Description	3 Ln Alt_Thur-West end of   Rhod - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts $/ \mathrm{mi}$	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	851	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.56
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.50

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	3.58097	Speed Power Coefficient (p)	0.41622
PF Slope Coefficient (m)	-1.57529	PF Power Coefficient (p)	0.66030
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	18.6
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	34.6

## Vehicle Results

Average Speed, $\mathrm{mi} / \mathrm{h}$	34.6	Percent Followers, \%	75.7
Segment Travel Time, minutes	0.69	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	18.6
Vehicle LOS	E		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	851	Bicycle Effective Width, ft	23
Bicycle LOS Score	4.63	Bicycle Effective Speed Factor	4.17
Bicycle LOS	E		

## Facility Results



## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Thursday 1:45-2:45
Project Description	3 Ln Alt_Thur-West end of   Rhod-EB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts $/ \mathrm{mi}$	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	727	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.67
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.43

## Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	2.56792	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46056	PF Power Coefficient (p)	0.67887
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	14.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi/h
1	Tangent	2100	-	-	35.6

## Vehicle Results

Average Speed, mi/h	35.6	Percent Followers, \%	69.2
Segment Travel Time, minutes	0.67	Follower Density (FD), followers/mi/ln	14.1
Vehicle LOS	D		
Bicycle Results			


Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	727	Bicycle Effective Width, ft	23
Bicycle LOS Score	4.59	Bicycle Effective Speed Factor	4.17
Bicycle LOS	E		

## Facility Results

T	VMT   veh-mi/p	VHD   $\mathbf{v e h}-\mathbf{h} / \mathbf{p}$	Follower Density, followers/   $\mathbf{m i / l n}$	LOS
1	72	0.11	14.1	D

[^16]
## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-East end of   Rhod - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	2251	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.81
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	1.32

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	75.0
Speed Slope Coefficient (m)	0.00000	Speed Power Coefficient (p)	0.00000
PF Slope Coefficient (m)	0.00000	PF Power Coefficient (p)	0.00000
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	75.0

## Vehicle Results

Average Speed, mi/h	75.0	Percent Followers, \%	0.0	
Segment Travel Time, minutes	0.00	Follower Density (FD), followers/mi/ln	0.0	
Vehicle LOS	F			
Bicycle Results				
Percent Occupied Parking	0	Pavement Condition Rating	4	
Flow Rate Outside Lane, veh/h	2251	Bicycle Effective Width, ft	23	
Bicycle LOS Score	5.20	Bicycle Effective Speed Factor	4.17	
Bicycle LOS	E			

## Facility Results

$\mathbf{T}$	VMT   veh-mi/p	VHD   veh-h/p	Follower Density, followers/   $\mathbf{m i / l n}$	LOS
1	0	0.00	0.0	$A$

[^17]
## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-West end of   Rhod-EB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	860	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	3.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.51

## Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	37.9
Speed Slope Coefficient $(\mathrm{m})$	2.57635	Speed Power Coefficient $(\mathrm{p})$	0.41674
PF Slope Coefficient (m)	-1.46140	PF Power Coefficient (p)	0.67891
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	17.7
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, $\mathrm{mi} / \mathrm{h}$
1	Tangent	2100	-	-	35.6

## Vehicle Results

Average Speed, mi/h	35.6	Percent Followers, \%	73.3
Segment Travel Time, minutes	0.67	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	17.7
Vehicle LOS	E		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	860	Bicycle Effective Width, ft	23
Bicycle LOS Score	3.42	Bicycle Effective Speed Factor	4.17
Bicycle LOS	C		

## Facility Results

T	VMT   veh-mi/p	VHD   $\mathbf{v e h}-\mathbf{h} / \mathbf{p}$	Follower Density, followers/   $\mathbf{m i} / \mathbf{l n}$	LOS
1	86	0.15	17.7	E

[^18]
## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Thursday $1: 45-2: 45$
Project Description	3 Ln Alt_Thur-East end of   Rhod - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts $/ \mathrm{mi}$	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	789	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	8.35
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.46

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	3.58310	Speed Power Coefficient (p)	0.41622
PF Slope Coefficient (m)	-1.57444	PF Power Coefficient (p)	0.66067
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	16.8
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	34.7

## Vehicle Results

Average Speed, $\mathrm{mi} / \mathrm{h}$	34.7	Percent Followers, \%	74.0
Segment Travel Time, minutes	0.69	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	16.8
Vehicle LOS	E		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	789	Bicycle Effective Width, ft	23
Bicycle LOS Score	4.84	Bicycle Effective Speed Factor	4.17
Bicycle LOS	E		

## Facility Results



## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Thursday $1: 45-2: 45$
Project Description	3 Ln Alt_Thur-East end of   Rhod-EB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	701	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	3.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.41

## Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	37.9
Speed Slope Coefficient (m)	2.57635	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46140	PF Power Coefficient (p)	0.67891
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	13.4
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	35.8

## Vehicle Results

| Average Speed, mi/h | 35.8 | Percent Followers, \% | 68.3 |
| :--- | :--- | :--- | :--- | :--- |
| Segment Travel Time, minutes | 0.67 | Follower Density (FD), followers/mi/ln | 13.4 |
| Vehicle LOS | D |  |  |
| Bicycle Results | 0 | Pavement Condition Rating | 4 |
| Percent Occupied Parking | 701 | Bicycle Effective Width, ft | 23 |
| Flow Rate Outside Lane, veh/h | Bicycle Effective Speed Factor | 4.17 |  |
| Bicycle LOS Score | C |  |  |
| Bicycle LOS |  |  |  |

## Facility Results

T	VMT veh-mi/p	VHD   veh-h/p	Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	70	0.11	13.4	D
Copyright © 2022 University of Florida. All Rights Reserved.		HCSTM Highways Version 2022 2050Thur_EastEndRhodyEB.xuf		Generated: 11/18/2022 14:49:48

## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-East end of   Rhod - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	2259	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	8.35
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	1.33

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	75.0
Speed Slope Coefficient (m)	0.00000	Speed Power Coefficient (p)	0.00000
PF Slope Coefficient (m)	0.00000	PF Power Coefficient (p)	0.00000
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	75.0

## Vehicle Results

| Average Speed, mi/h | 75.0 | Percent Followers, \% | 0.0 |
| :--- | :--- | :--- | :--- | :--- |
| Segment Travel Time, minutes | 0.00 | Follower Density (FD), followers/mi/ln | 0.0 |
| Vehicle LOS | F |  |  |
| Bicycle Results | 0 | Pavement Condition Rating | 4 |
| Percent Occupied Parking | 2259 | Bicycle Effective Width, ft | 23 |
| Flow Rate Outside Lane, veh/h | 5.38 | Bicycle Effective Speed Factor | 4.17 |
| Bicycle LOS Score | E |  |  |
| Bicycle LOS |  |  |  |

## Facility Results

$\mathbf{T}$	VMT   veh-mi/p	VHD   veh-h/p	Follower Density, followers/   $\mathbf{m i / l n}$	LOS
1	0	0.00	0.0	$A$

[^19]
## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-East end of   Rhod - EB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	825	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	3.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.49

## Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	37.9
Speed Slope Coefficient $(\mathrm{m})$	2.57635	Speed Power Coefficient $(\mathrm{p})$	0.41674
PF Slope Coefficient $(\mathrm{m})$	-1.46140	PF Power Coefficient $(\mathrm{p})$	0.67891
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	16.7
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, $\mathrm{mi} / \mathrm{h}$
1	Tangent	2100	-	-	35.6

## Vehicle Results

Average Speed, mi/h	35.6	Percent Followers, \%	72.3
Segment Travel Time, minutes	0.67	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	16.7
Vehicle LOS	E		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	825	Bicycle Effective Width, ft	23
Bicycle LOS Score	3.39	Bicycle Effective Speed Factor	4.17
Bicycle LOS	C		

## Facility Results

T	VMT   veh-mi/p	VHD   $\mathbf{v e h}-\mathbf{h} / \mathbf{p}$	Follower Density, followers/   $\mathbf{m i} / \mathbf{l n}$	LOS
1	82	0.14	16.7	E

[^20]
## Segment Analysis Adjusted Volumes

Alternative	Year	Day	Segment End	Original   Volume	Updated Capped Volumes
3 ln	2030	Sun	West	1708	1700
3 ln	2030	Sun	East	1715	1700
5 ln	2030	Sun	West	1708	1700
5 ln	2030	Sun	East	1715	1700
3 ln	2050	Sun	West	2251	1700
3 ln	2050	Sun	East	2259	1700
5 ln	2050	Sun	West	2251	1700
5 ln	2050	Sun	East	2259	1700

HCS 2022
3-Lane Altematives Segment Analysis (Sunday Only)
Using volumes not exceeding the Capacity (1700 veh)

## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-West end of   Rhod - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	1700	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.81
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	1.00

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	3.58164	Speed Power Coefficient (p)	0.41622
PF Slope Coefficient (m)	-1.57502	PF Power Coefficient (p)	0.66042
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	45.5
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	33.4

## Vehicle Results

Average Speed, $\mathrm{mi} / \mathrm{h}$	33.4	Percent Followers, \%	89.3
Segment Travel Time, minutes	0.71	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	45.5
Vehicle LOS	E		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	1700	Bicycle Effective Width, ft	23
Bicycle LOS Score	5.06	Bicycle Effective Speed Factor	4.17
Bicycle LOS	E		

## Facility Results

T	VMT   veh-mi/p	VHD   $\mathbf{v e h}-\mathbf{h} / \mathbf{p}$	Follower Density, followers/   $\mathbf{m i} / \mathbf{l n}$	LOS
1	169	0.58	45.5	E

[^21]
## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2030
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-TwoLanehwy   (east End) - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	1700	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	8.35
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	1.00

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	3.58310	Speed Power Coefficient (p)	0.41622
PF Slope Coefficient (m)	-1.57444	PF Power Coefficient (p)	0.66067
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	45.5
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	33.4

## Vehicle Results

Average Speed, $\mathrm{mi} / \mathrm{h}$	33.4	Percent Followers, \%	89.3
Segment Travel Time, minutes	0.72	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	45.5
Vehicle LOS	E		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	1700	Bicycle Effective Width, ft	23
Bicycle LOS Score	5.23	Bicycle Effective Speed Factor	4.17
Bicycle LOS	E		

## Facility Results

$\mathbf{T}$	VMT   veh-mi/p	VHD   veh-h/p	Follower Density, followers/   $\mathbf{m i / l n}$	LOS
1	169	0.59	45.5	$E$

[^22]
## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-West end of   Rhod -WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	1700	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	7.81
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	1.00

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	3.58164	Speed Power Coefficient (p)	0.41622
PF Slope Coefficient (m)	-1.57502	PF Power Coefficient (p)	0.66042
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	45.5
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	33.4

## Vehicle Results

Average Speed, $\mathrm{mi} / \mathrm{h}$	33.4	Percent Followers, \%	89.3
Segment Travel Time, minutes	0.71	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	45.5
Vehicle LOS	E		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	1700	Bicycle Effective Width, ft	23
Bicycle LOS Score	5.06	Bicycle Effective Speed Factor	4.17
Bicycle LOS	E		

## Facility Results



## HCS Two-Lane Highway Report

## Project Information

Analyst	AIR	Date	$9 / 27 / 2022$
Agency	ODOT	Analysis Year	2050
Jurisdiction	Rhododendron	Time Analyzed	Sunday 3:00-4:00
Project Description	3 Ln Alt_Sun-East end of   Rhod - WB	Units	U.S. Customary

## Segment 1

## Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2100
Lane Width, ft	11	Shoulder Width, ft	6
Speed Limit, mi/h	40	Access Point Density, pts/mi	28.0

## Demand and Capacity

Directional Demand Flow Rate, veh/h	1700	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	1.00	Total Trucks, \%	8.35
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	1.00

## Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	37.7
Speed Slope Coefficient (m)	3.58310	Speed Power Coefficient (p)	0.41622
PF Slope Coefficient (m)	-1.57444	PF Power Coefficient (p)	0.66067
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	45.5
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

## Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2100	-	-	33.4

## Vehicle Results

Average Speed, $\mathrm{mi} / \mathrm{h}$	33.4	Percent Followers, \%	89.3
Segment Travel Time, minutes	0.72	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	45.5
Vehicle LOS	E		

## Bicycle Results

Percent Occupied Parking	0	Pavement Condition Rating	4
Flow Rate Outside Lane, veh/h	1700	Bicycle Effective Width, ft	23
Bicycle LOS Score	5.23	Bicycle Effective Speed Factor	4.17
Bicycle LOS	E		

## Facility Results

$\mathbf{T}$	VMT   veh-mi/p	VHD   veh-h/p	Follower Density, followers/   $\mathbf{m i / l n}$	LOS
1	169	0.59	45.5	$E$

[^23]
# Appendix D <br> Community Drop-in Outreach Event Summary 

851 SW 6th Avenue, Suite 600
Portland, OR 97204
P 503.228.5230

## Memorandum

September 19, 2022
Project \#27358

To: Sandra Hika ri, Project Manager
Oregon Department of Transportation
123 NW Flanders St. Portland, OR 97209
From: Nicholas Gross, Alice Root, Hemanus Steyn
CC: Scott Hoelscher

RE: US 26 Rhododendron Design Refinement Plan

## TWO-PAGE DROP-IN OUTREACH EVENT SUMMARY MEMORANDUM

## Purpose

The purpose of this summary is to doc ument feedback received from the project site visit and community drop-in outreach event. The information summarized in this memorandum will be used to inform the development of the altematives and decision making as part of TM \#5 Design Refinement and Altematives Evaluation Memorandum.

## Site Visit Summary

The project management team (PMT) and ODOTstaff conducted a site visit of the Rhododendron project area on Thursday, August 11, 2022. The site visit attendees included:

- Sandra Hika ri, ODOT
- Hope Estes, ODOT
- Shawn Stevens, ODOT
- J im Peterson, ODOT
- Bill Ewing, ODOT
- Kemie Franey, ODOT
- Magnus Bemhardt, ODOT
- Canh Lam, ODOT
- Ben Chaney, ODOT
- Scott Hoelscher, ClackamasCounty
- Nic holas Gross, Kittelson \& Associa tes, Inc.
- Alice Root, Kittelson \& Associates, Inc.

The group started the site visit at the Dairy Queen parking lot, heading east along US 26 toward the East Henry Creek Road intersection. The group crossed US 26 at the East Henry Creek Road intersection and continued west a long US 26 on the south side. The group crossed US 26 at the grocery store a nd continued east to Dairy Queen a long the north side of US 26. The group stopped at multiple location sites to disc uss the existing roadway conditions, vehicle traffic, and pedestrian and cyclist activity. The group made the following observations:

- The bus stop located a cross the street from the grocery store has a limited sight distance to the west.
- Access to the pedestrian trails at the swinging bridge and at the back of the former Flavorbus restaurant parking lot are not easily visible from the US 26 .
- Opportunities to relocate the current \& temporary busstop to the former Flavorbus restaurant parking lot should be explored by the consultant team
- At the east end of Rhododendron, the consultant team observed the radar speed sign reporting consistent vehicle speeds exceeding 50 mph .
- It was noted that vehic les were likely traveling at slowly speeds due to the presence of the group in high visibility vests.
- The consultant team observed smoke from the brakes of large vehic le trucks trying to slow down through Rhododendron. Braking and the ability to stop heavy freight coming downhill should be considered when planning for an enhanced pedestrian crossing.
- Advance waming and signage should be incorporated to any proposed crossing, partic ularly in the westbound direction for vehiclescoming downhill.
- During the span of the site visit, the project team observed eight people biking traveling west, four people biking east, and three pedestria ns crossing US 26.
- Dozens of people mounta in biking were observed boarding/alighting the Mt. Hood express to the top of Timberline; those same people biking were observed later in the day retuming to their vehicles parked at the transit stop.
- Noted the roadway storm drain locations in front of the Mt Hood Holdingsproperty at the west end of Rhododendron on the eastbound shoulder. The stom drains are present starting at this loc ation and to the west, but not to the east.


## Drop-in Outreach Event Summary

In July, ODOTstaff publicized the drop-in event through ODOT's and Clackamas County's website, through community bulletin boards, in the local newspaperand through a targeted mailer to the approximately 300 community residents. Information provided in the drop-in event included:

- A project overview, schedule, and area map
- Project vision statement
- Prior project area concept and vision plans
- Existing conditions technical memorandum

Public participantswere able to offer input through:

- Written survey
- Annotationson a large area base map
- One-on-one conversations with the project team and ODOTstaff

The two-hour event drew strong participation over 40 people attending the drop-in event in-person, and 25 comment response surveys retumed. Ma ny people sta yed to ask additional questions and express their opinions with the project team and ODOTstaff, and to identify areas of concem on the project area base map. The results of the survey are quantitatively summa nized below:

The resident characteristic s for the surveyed responses were:

```
- 74% (20 people) full time residents
- 15%(4 people) part time residents
- 11% (3 people) business owners in addition to being full time or part time residents
- 4%(1 person) visitor
```

Approximately half the survey respondents walked to the event and the other half drove. The most identified key destinations include the post office, grocery store, restaura nts, and coffee shop.

The primary transportation concemsfor the surveyed responses are:

- $89 \%$ (24 people) high speeds
- $85 \%$ (22 people) sa fety
- 67\% (18 people) pedestrian and bicycle access
- 48\% (13 people) traffic/congestion

Many partic ipants added written comments, identifying similar transportation concems:

- Concems of no crosswalks making it diffic ult to safely cross US 26
- Concems forhigh-speed vehic les and trucks also making it diffic ult to cross ortum onto US 26
- Observations of increased traffic and congestion
- Support for crosswalks and use of center median as a refuge island
- Support for reducing the total number of lanes and slowing traffic down
- Support for radar to enforce speed limits
- Support for bicycle and walking paths


## AppendixE Stakeholder Interview Summaries

# Stakeholder Interview \#1 - Brett Fisher, Mt Hood SkiBowl. 7/ 20/ 22 

## Introductions

Nick Gross, Kittelson \& Associates, Inc. Senior Planner. C onsulta nt Project Mana ger. Sandra Hikari, Oregon Department of Transportation. ODOTProject Manager.

Key action information, themes, and feedback are shown below in bold

## QUESTION 1

Q: Please expla in your role at Mt. Hood SkiBowl. How many employees do you have? Where do they live? How do they access Mt. Hood SkiBowl?

A: I'm involved with everything at Mt. Hood SkiBowl, from Rhody to Govemment Camp. More planning forward. Lodging development. I've worked with Kittelson on development projects. We are the owner of Snowline Motel property. We also lease the property next to Snowline Motel, "Always Towing". Worked with Steve Graper at the CPO in past. There are apartments being built in Welches that we have looked at in potentially replicating for Rhody.

## QUESIION 1

Q: What is your relation to the community of Rhododendron (resident [full/part time], business owner, renter, visitor, passing by)?

A: Property owner. We own the two sites noted previously. We used to own a mountain bike/ski rental shop adjacent to the "Always Towing" site. Now we primarily use Rhody as a place fore storage.

## QUESTION 2

Q: What is your primary mode of transportation when traveling in Rhododendron?
A: Vehicle. I used to ride trails on my mounta in bike. Mountain biking was a big component of bus stop; the bus stop is located on the property that we lease. At the time of loc ating the bus stop, me, and the owner of SkiBowl a llowed it but we didn't wa nt it there. We were concemed the bus stop would become pemmanent, and we wouldn't have control over.

## QUESTION 3

Q: What are your primary transportation concems in Rhododendron? (High speeds, safety, pedestrian and bicycle facilities, highway traffic?)

A: High speeds, lack of pedestrian crossings, overall safety. People heading eastbound, coming around the comer before the Swinging Bridge speed up to get around semi-trucks before it transitions to 2-lanes.
Accessing properties with exc essive speeds makes it rea lly diffic ult and da ngerous, partic ularly tuming into the Snowline property. I have about 10-12 employees housed at Snowline Motel. We've converted the motel into long-term housing. Those residents use grocery store, get DQ, get coffee. Makes a lot of sense to make conversion to 2-lane back further and slow people down through Rhody. Public parking is loosely defined.

It would be nice to see added sidewalk and streetlamps to create ped, bike, community, natural and features. I have two key employees at the managerial level I can pass on their contact information to you: J asmin Bums, Stephanie Baxter. Wifi at the Snowline Motel is ind ividual by individual.

## QUESTION 4

Q: What are the primary destinations in Rhododendron that you frequent? How do you get there? What transportation ba miers do you face (i.e., high speeds, lack of facilities, dangerous crossings, ADA accessibility, parking)?

A: The post office is a main attraction/destination. The primarily bariers are getting on/off highway to access bus stop, bikes are in no man's land. There is no defined bike route through or around Rhody. Add bike hub/fix-it station?

## QUESTION 5

Q: Community input received as part of the Rhododendron Ma in Street Redevelopment Plan noted the lack of designated highway crossings c reating signific a nt challenges. Do you think a pedestrian crossing should be installed across the US 26? If yes, where, and why?

A: Best location for a pedestrian crossing would be somewhere central so it has good sight distance. If traffic is slower, you'll have more options. The post office is central and has easy access east and west. Suggest somewhere near the post office.

## QUESTION 6

Q: Aspart of the Rhododendron Ma in Street Redevelopment Plan, 69\% of survey respondents identified highway traffic, speed, and noise as their top concemsfacing Rhododendron. What solutions do you think could reduce highway traffic, speed, and noise?

A: Create the transition zone west of the Swinging Bridge area, slow traffic through Rhody. It will solve a lot of not all the problems. Noise is a big issue, it's really loud.

## QUESION 7

Q: US-26 has 2 lanes east of Rhododendron, shifting to 3-lanes near Henry Creek Road, then becoming 5lanes in Rhododendron. This change in number of lanes also changes the feeling or "context" of the roadway. What suggestions do you have to improve the roadway context to fit more of the community's needs?

A: I see two options. Expand the highway to 4 lanes up and down the mountain or change the transition zone. There is always going to be traffic regardless. Holiday period is a nightmare. Part of the traffic problem is that people don't know how-to drive-in snow. Number of lanes isn't going to change perceived traffic.

## QUESTION 8

Q: Is there a nything else you would like to discuss or information you would like to provide to the project team?

A: I want to bring up the bus stop pull-off and parking again. I think it will be a majorhurdle to overcome. Mounta in biking will continue to grow in this a rea. The vision of a park n ride for mountain biking stationed out of Rhody should be incorporated into this project, partic ularly how parking to access the bus fits in. Our long-term goal is to develop our Rhody site into something useful a nd something that we can attract people to.

## Stakeholder Interview \#2- Clackamas Count Pedestrian and Bic ycle Advisory Committee 8/2/22

## Introductions

Nick G ross, Kittelson \& Associates, Inc. Senior Planner. C onsulta nt Project Mana ger.
Brett Setterfield, Pete Ihrig, Bruce Parker (Cha ir), Ric hard Weber, Thelma Haggenmiller, Scott Hoelscher. Del Scharffenberg, J oe Edge, Kelli Grover Steve Adams, Hans Sutschersich, Dave Weber. Tonia Williamson

Key action information, themes, and feedback are shown below in bold

## DISC USSON: HOWTO SLOWTRAFIC DOWN?

- Hashed marks on pavement that get closer and closer. The bridge on SW Barbur Blvd is good example.
- Road texture improvements
- Get things as close to the roadway without encroaching into "hole in the air"
- Electronic speed feedback/ indicators
- 4 traffic lanes vs. 3 la nes less
- Wider and smoother bike lanes. Rather than mixing bicycling with pedestrian on path.
- Rumble strips for vehicles. Don't put rumble strips in bike lane, keep right at line.
- Enforcement: No reliability with sheriff or police to slow down
- Supportive of dual multiuse path and bike lane on street
- Create a narrow comidor
- Pa int la nes as narrow as possible. Add buffer to bike lanes.
- Add vertic al objectives (off the road)


## DISC USSON: PREFERRED BICYCLE FACILTY

- Multiuse paths
- Wayfinding and signage are really important. Sunnivergood example.
- Has thought been given to linking $Z \mathrm{~g} \boldsymbol{Z a}$, Rhody, and Welches through network of multiuse paths?
- Yes, 6 years ago that waslooked at as part of Mt. Hood PedBike Implementation Plan.
- Bike path and multiuse path
- Underpass, rather than on-street c rossing?
- Repaving may be faster

Scott,

I would like to weigh in on the Rhododendron project so if you could pass this along to Nick I would appreciate it.

For Nick Gross

It is my opinion that the optimal design for bike/ped passage through the Rhododendron project would be a shared multi-use path elevated or separated from the roadway and on-roadway bike lanes for through riders. Ideally the shared use path would have different a different colors for the bike and ped sides. Also at crosswalks there should be buttons on both sides of the shared paths so the bike riders do not have to encroach on the pedestrian side of the path.

## Stakeholder Interview \#3 - J oe Marek, Kristina Babcock. 8/3/22

## Introductions

Nick Gross, Kittelson \& Associates, Inc. Senior Planner. C onsulta nt Project Mana ger. Sandra Hikari, Oregon Department of Transportation. ODOTProject Manager.

Key action information, themes, and feedback are shown below in bold

## QUESTION 1

Q: Please expla in your role at Clackamas County?

J : Transportation Safety Program Manager. Traffic Engineer. Been with County for 31 years. Work in coridor entire career.

K: Been a round handful of years. Demand response elderly, last mile shuttles, mt. hood shuttles.

J: Long history of safety issues. Steadily building of safety back to the 90's.

## QUESTION 2

Q: What is your relation to the community of Rhododendron (resident [full/ part time], business owner, renter, visitor, passing by)?

J : driver, winter and summer sports. On and off rode biking.
K: not a lot of experience. Dealing more of day-to-day operations

## QUESTION 3

Q: What are your primary transportation concems in Rhododendron? (High speeds, safety, pedestrian and bicycle facilities, highway traffic?)

J : speeding on US26, c rashes, lack of pedestrian crossings, non-motorized users to get across 26. Recreational surges. Mixed in with freight comidor. Perception of safe speed. Sad lack of enforcement.

K: similar. Lack of pedestrian crossings. We stop with villa ges shuttle and mt. hood express. Long-tem bus stop location. Rhody we pull off on the side of the road. Mt. hood foods (wb) and eastbound gravel lot. Sa fely pull off the highway. RRFB.

## QUESION 4

Q: What are your primary destinations in Rhododendron that you frequent? How do you get there? What transportation ba miers do you face (i.e. high speeds, lack of facilities, dangerous crossings, ADA accessibility, parking?)

K: cant tell you why Rhody is such a popular stop. Mtn. bikers come down mtn. Pioneer Bridal Trail. Very popular spot. Parking area for mtn. bikers (cars). No park $n$ ride. \% of people riding bus? We don't track
ridership into great detail. Villages shuttle "around town" Bike trailer to hold $20-25$ bikes. 38 ' bus with a 20 foot tra iler.

J : Trails formtn. bikers.

## QUESTION 5

Q: Community input received as part of the Rhododendron Ma in Street Redevelopment Plan noted the lack of designated highway crossingscreating signific ant challenges. Do you think a pedestrian crossing should be installed a cross the US 26? If yes, where, and why?

J : sense of location?
K: as close to transit stop a s possible. J ust west of Mt. Hood Foods.

## QUESTION 6

Q: As part of the Rhododendron Ma in Street Redevelopment Plan, $69 \%$ of survey respondents identified highway traffic, speed, and noise as their top concemsfacing Rhododendron. What solutions do you think could reduce highway traffic, speed, a nd noise?

J: reducing traffic: work that Kristina is doing. Stronger parking management. Hard topic to cover. I think a lot about changing the context. People come off the 2 -lane section and speed up into the 5 -lane section. Change context of highway. Looks and smells like a lower speed facility. 3 la ne transition.

J: curbed sidewalks, visual cues. Automated enforcement. Staff shortagesfor 30-year in the transportation department. Balance of freight needs, safety, and change of context.

J : Interested to be invited to that MAC meeting. Good familiarity with safety and freight. Maybe just listen. Compiling crash history, delay, and looking at options to reduce options and how that might improve delay time.

J : Reducing traffic: no parkn ide lots in comidor?
K: City of Sandy Operational Center, Dormant Center(Subway), Hoodland Senior Center.
J : Improving park n ride presence.
K: Not well used and County not happy about maintaining.

## QUESTION 7

Q: US-26 has 2 lanes east of Rhododendron, shifting to 3-lanes near Henry Creek Road, then becoming 5lanes in Rhododendron. This change in number of lanes also changes the feeling or "context" of the roadway. What suggestions do you have to improve the roadway context to fit more of the community's needs?

J : gateway treatments. Tough when you travel along the road, diffic ult to maintain. Roundabouts. You are entering a different place. Come into Sisters from the east - good example.

K : Sisters is a great example.

## QUESIION 8

Q: Is there a nything else you would like to discuss or information you would like to provide to the project team?

J : Potential solutions, stratified list of solutions, low cost and medium cost and high-cost solutions. Near term safety improvements. Vulnerable users trying to use transit.

K: how to provide more parking forpeople in Rhody, parkn nide, orgeneral parking.

# Stakeholder Interview \#4: Zach \& Angela Harrell, Dairy Queen (DQ) and Shelby Reid, Alderbrook Lodge. -9/22/22 

## Introductions

Nick G ross, Kittelson \& Associates, Inc. Senior Planner. C onsulta nt Project Mana ger. Sa ndra Hikari, Oregon Department of Transportation. ODOTProject Manager.

Key action information, themes, and feedback are shown below in bold

## QUESTION 1

Q: Please expla in your respective roles at the Alderbrook Lodge and Dairy Queen. How many employees do you have? Where do they live? How do they access your business/property?

Zach Ha rell (ZH): My wife and I are third generation DQ owners. We've lived in "Rhododendron" for about 10 years, more specifically we live in Welches. We have 13 employees ( 10 active nght now), all live between Sandy and Rhody. Most live in Welches. A couple employees drive, others carpool and some use public transportation.

Shelby Reid (SR): I am here representing the Reid Family a nd Alderbrook Lodge. The Alderbrook Lodge is on the National Historic Register. It has been in the fa mily for over 100 years. I am a part-time resident. When I'm not living in Rhododendron I live in Flagstaff, A rizona.

## QUESTIONS 2

Q : What is the peak period for DQ :
$Z H$ : Weekends when school is out is very busy. Once the mounta in opens, it is very busy in the momings. We see traffic back up to the Thirftway. Wintertraffic peaks and summertraffic is a constant flow.

## QUESTION 3

Q: What is your primary mode of transportation when traveling in Rhododendron?
ZH: Personal vehicle. Once we are at Da iry Queen we walk to the store, coffee shop, post office, etc.
SR: When I am living in Rhody, I am primarily a pedestrian or bicycle. Representing the rest of the family, most of them have to drive to cross US26. My mother has to drive across US26 to get to the grocery store.

## QUESTION 4

Q: What are your primary transportation concems in Rhododendron? (High speeds, safety, pedestrian and bicycle facilities, highway traffic?)
$Z$ : Traffic backing up in front of DQ heading east. When traffic slows down, we slow down. The speed limit changesto 40 through town. People speed to get ahead of others traveling up the mountain. We have an employee who walksto work from ac ross the street. Sometimes it takes them 10 to 15 minutes to cross the street.

SR: My concems are safe egress and ingress. The speeds are high, people need to slow down and tum quickly into adjacent properties. Sa fety is primary. Noise from transportation impacts our property. I want to inc rease the community feel. Right now it's diffic ult to enjoy local businesses. As a cyc list, I would like a wellmarked and easily accessible busstop to take my bike up the mountain.

## QUESTION 5

Q: What are the primary destinations in Rhododendron that you frequent? How do you get there? What transportation ba miers do you face (i.e., high speeds, lack of facilities, dangerous crossings, ADA accessibility, parking)?

ZH: Luckily for us, we are on the same side of highway as store, coffee, post office. Walking is all on the same side.

SR: Tra ils are my primary destination, walking along Henry Creek. It's a challenge to get a cross the highway. Secondary destinations are the post office, restaurant, and DQ. SometimesI decide not to go because it's too dangerous. Width of highway, high speeds, lack of pedestrian crossings. More lanes mean fasterspeeds.

## QUESTION 6

Q: Community input received as part of the Rhododendron Main Street Redevelopment Plan noted the lack of designated highway crossings c reating signific a nt challenges. Do you think a pedestrian crossing should be installed across the US 26 ? If yes, where, and why?

ZH: I am supportive of a pedestrian crossing. Especially for people on the south side. Maintaining curbing during winter is a full-time job. Curbs for a pedestrian refuge island might be more dangerous. Last thing I want to see is someone stuck in the middle of the highway. Supportive of crossings, lighting would increase safety for pedestria ns.

SR: I am very supportive of 5 to 3 la nestransition. The center lane can serve ingress/egress. Putting a pedestrian refuge isla nd in center island would be great. Traffic calming elements a re supported. A pedestrian island needsto be built at a width that accommodates plows. Would like to see a crosswalk and a pedestrian refuge.

## QUESTION 7

Q: Aspart of the Rhododendron Ma in Street Redevelopment Plan, $69 \%$ of survey respondents identified highway traffic, speed, and noise as their top concemsfacing Rhododendron. What solutions do you think could reduce highway traffic, speed, a nd noise?

ZH: Noise is going to be hard to mitigate. Freight has to move. Freight coming down the mounta in is the loudest. Speed can be reduced but without enforcement there will be no change.

Angela Harrell (AH): It is important to consider traffic during the winter months. Anytime before 10am, traffic backs up to Skyway, sometimesall the way to Thriftway. We feel na rrowing cross section would cause more traffic and lengthen the traffic line already there.

SR: In terms of how to deal with traffic... Safety is the priority and a pedestrian crossing with a pedestrian refuge would help. Reducing speed through Rhody, like through Welches. There are signals down the road
in Welches, freight vehic les have to stop for those. To address noise, I recommend instituting an engine breaking prohibition i.e., "No j-brake, orno engine brake". Reducing speed also reducesnoise.

## QUESTION 8

Q: US-26 has 2 lanes east of Rhododendron, shifting to 3-lanesnear Henry Creek Road, then becoming 5lanes in Rhododendron. This change in number of lanes also changes the feeling or "context" of the roadway. What suggestions do you have to improve the roadway context to fit more of the community's needs?

SR: I a gree with the outlined improvements of the 3 lane altemative. If you take the outside lanes and create pedestrian and bicycle space, it could activate the place. Desire to see bus stopsacross from each other with a pedestrian crossing and refuge island connecting them.

ZH: Enforcing speed is the best. 3-la nes would be diffic ult with egress and ingress. There have been events in Rhody that have required 3-lanes; during those events we've sent people home early because we have no business. We thrive on people coming in/out/through the community.

## QUESTION 9

Q: Is there a nything else you would like to discuss or information you would like to provide to the project team?

ZH: Regarding traffic, I don't wa nt to see la ne reduction but understand sa fety issues. I'm not sure a bout sidewalks, but I am supportive of a crosswalk and increased lighting.

SR: When the ZgZag bridge was widen and the laneswere expanded, there wasa loss of the frontage road and bamier of trees. We were promised that a lot of those trees would be replanted. That never happened. Nice to see restoration aspart of this project.

## Appendix F Technical Workshop Summary

# US 26 Rhododendron Design Refinement Plan <br> Technical Workshop 

Thursday, October 27| 3:00 PM- 5:00 PM

1. Attendance
a. Kittelson: Nick Gross, Hermanus Steyn, Ashleigh Ludwig, Alice Root.
b. ODOT: Sandra Hikari, Rian Windsheimer, Kristen Stallman, Katie Bell, Jeffrey Hayes, Magnus Bernhardt, Shane Jansen, Shawn Stephens, Will Ewing, Neelam Dorman, Christopher Basil, Paul Scarlett, Kerrie Franey, Canh Lam, Ben Chaney.
c. Clackamas County: Joe Marek, Scott Hoelscher.
2. Discussion: General
a. As highlighted in ODOT's multimodal decision-making framework, we need to verify that our decisions address the intended outcomes of the project as we discuss the various design elements (Nick).
b. From a tort liability perspective, we need to document our decisions and show how we meet and address the project outcomes. If we cannot do that, then we need to justify why not, and if needed potentially change the project vision and goals (Hermanus).
c. The taper of the transition on the west side for the 3 -lane alternatives should occur before the bridge to avoid further bridge deterioration (Joe).
i. Project team to evaluate location - moving the taper too far before entering the community may not accomplish the speed reduction messaging into town.
3. Discussion: 5-Lane with Refuge Island
a. Right-of-way (ROW) will create significant impacts and costs (Jeff).
i. The intent is to have all the improvements within the existing ROW. However, there may be impacts to entities encroaching into the existing ROW.
b. Clarification that widening is only associated with the sidewalks (still within existing ROW) and most impacts are related to the utility conflicts (Cahn).
4. Discussion: 3-Lane with or without Refuge Island
a. For the two 3-lane alternatives, the discussion quickly focuses on the potential challenges associated with a refuge island (Shane).
b. Since we are removing a travel lane in each direction, it appears to have flexibility in exploring wider travel lane dimensions (Kristen).

## 5. Discussion: Two-Way Left-Turn Lane (TWLTL)

a. ODOT's primary request for $14^{\prime}$ two-way left-turn lane (TWLTL) conflicts with the HDM's (Highway Design Manual) recommended 11'-12'
b. Considerations for lane width:
i. Rhododendron is one of the only places where trucks can easily stop along and turn off US 26. Trucks currently turn in and out using the middle lane (TWLTL) (Shane).
c. A $14^{\prime}$ TWLT lane should be provided when a refuge island is present. Without a refuge island, use a $12^{\prime}$ TWLT consistent with HDM (Cahn).
d. When presenting to mobility, instead of setting lane widths, provide a lane width (TWLTL or refuge island with shy distances) range such as $12^{\prime}-14^{\prime}$ (Cahn).
i. See discussion about refuge island.
e. It appears that the wider 14' TWLTL for the 3-lane alternatives could be feasible (Kristen).
f. Verify our decisions:
i. Does a $14^{\prime}$ TWLTL encourage slower speeds? Do we still address our project goal to slow traffic through the community? Do we minimize crossing distance vulnerable user exposure)?

## 6. Discussion: Travel Lane

a. Maintenance prefers wider lanes to accommodate freight traffic (Shane).
b. Snow conditions create roadway issues. Lanes become more difficult to see in the snow and vehicles need more room to avoid potential side-swipe crashes (Joe).
c. Maintenance equipment for removing snow has 14 ' wide pressure blades on the front (Shane).
d. It appears that the wider $14^{\prime}$ travel lanes can fit within the 3-lane alternatives. There is ample room (Kristin).
e. Verify our decisions:
i. Do 12 ' travel lanes encourage slower speeds? Do we still address our project goal to slow traffic through the community? Do we minimize crossing distance - vulnerable user exposure?
7. Discussion: Travel Speed
a. A $35-\mathrm{mph}$ target speed for the 3-lane alternative does not seem realistic unless enforced. The current conditions appear vehicles driving $70-\mathrm{mph}$ through the 5 -lane
section of the corridor. Eastbound vehicles tend to slow down to $50-\mathrm{mph}$ at the east end where the corridor narrows to 2-lanes (Shane).
b. The community would need to find a way to obtain automated enforcement. Automated enforcement would require legislative change (Joe).
i. There was community interest in traffic cameras (Magnus).
ii. Would like to share with the larger group: Speed enforcement cameras have proven very effective in reducing speed and improving roadway safety (worldwide). This is a low impact tool and requires only minor modification to the physical environment and works with all alternatives. Is this something that we could consider as part of this project? This project would make a great pilot/test project. (Magnus).
iii. Legislative change needed to use photo enforcement in Clackamas County - would love to have the options available (Joe). Need a legislative champion to make the change happen.
iv. Current law only allows Cities to operate automated enforcement (Ben).
c. ODOT does not have the ability to impose automated enforcement.
d. It is unrealistic that the 3-lane alternative would achieve a $35-\mathrm{mph}$ target speed or that the 5 -lane alternative would achieve a $40-\mathrm{mph}$ target speeds even with geometric changes, signing, or striping. ODOT cannot change the posted speed to be less than $40-\mathrm{mph}$ (Jeff, Cahn).
e. Suggest wider lanes in the 3-lane section and narrower in the 5-lane section. The 3-lane section will in general help slow the speed with the greater volumes (Jeff).
f. Context and automated enforcement will encourage slower speeds (Joe).
g. Verify our decisions:
i. The intent is to reduce the current 85 -percentile speed through the community. Getting speed to the posted speed would result in an approximately $15-\mathrm{mph}$ reduction meeting the project goals.
8. Discussion: Refuge Island \& Crossing Treatment
a. A rectangular rapid-flashing beacon (RRFB) cannot be placed without a refuge island (ODOT Traffic Manual). ODOT would recommend including a red device (signal or pedestrian hybrid beacon [PHB]) for an overhead treatment. Most visitors would recognize a signal over an PHB (Jeff).
b. Considerations for Refuge Island:
i. Any refuge island or median above ground is detrimental to maintenance (Joe, Will).
ii. Warm Springs has a refuge island that gives the appearance of a median but remains flush with the asphalt allowing vehicles to drive over (Will).
iii. It is worth considering other options that do not require a refuge island such as an enhanced crossing or pedestrian signal (Jeff).
iv. US 97 through La Pine was improved by converting a 5-lane cross section to a 3-lane cross section with pedestrian refuge islands (Shawn). Maintenance to follow-up with ODOT staff overseeing La Pine.
c. Verify our decisions:
i. Not having a refuge island, does the road encourage slower speeds? Do we still address our project goal to provide an enhanced crossing for vulnerable users in a slower speed environment?

## 9. Discussion: Crossing Location

a. A crossing should not be located at the east end due to speeding issues and limited sight line coming from the east (downhill westbound traffic) (Shane, Shawn)
b. A crossing should be avoided on both ends of Rhododendron due to poor sight distance on the west end around the curve and speeding vehicles on a downward grade on the east end. (Cahn).
c. Referring to the map showing potential crossing locations: Combine all three of the specified locations (on the west end) into one general crossing location. The specific location of the crossing will be guided by design elements such as access to sidewalks or access to adjacent properties (Jeff).
d. Verify our decisions:
i. Providing an enhanced crossing in the community will accomplish a project goal.
10. Discussion: Multiuse Path and Sidewalks
a. ODOT Maintenance would not be responsible for clearing the sidewalk or multiuse paths.
b. The buffer space within the cross section would provide an area for snow storage. If sidewalks are included in the design, properties owners would be responsible for removing the snow (Shane)
c. Sand in the road does not normally get removed until after the winter season (Basil, Shawn).
d. Worst case, sidewalks and multiuse paths may not be accessible during snow conditions, but people walking and biking will have a facility for most of the year (Jeff).
e. A multiuse path on the south side of US26 is already being built west of US26 as part of the STIP project: K21599 - US 26 Salmon Rv to Zigzag. The multiuse path is set back and separated from the highway between 10-20 feet (Jeff).
f. ODOT does not encourage including multiuse paths where there are many driveways (Cahn).
g. Verify our decisions:
i. Providing a multiuse path on the south side of US 26 is consistent with ongoing ODOT efforts to provide a facility along US 26.
ii. Providing sidewalk and multiuse path within the community addresses community needs and project goals. We understand maintenance will have to be addressed.

## 11. Snow Storage \& Maintenance

a. Snow plowing is weather dependent. Sometimes maintenance will use a vehicle lane for snow storage if the edge of roadway does not provide enough space. A wide multiuse path could serve as snow storage (Shane).
b. La Pine has similar snow and roadway conditions with wide lanes and wide buffered bike lanes. It would be worth it to reach out to the maintenance group that takes care of the La Pine area. (Kristin, Sandra)
c. Verify our decisions:
i. Maintenance agreements may have to be established with the community.

## 12. Operations Analysis

a. 5-lane alternative meets operational targets, but the 3-lane alternative shows some side streets that do not meet operational targets in 2050.
b. For the segment analysis, the capacity is exceeded (volume-to-capacity [v/c] over 1) less than 1 hour per day in 2030, and an average of 0.3 hours per day in 2050. (Ashleigh).
c. Through internal discussion at ODOT, it may be more useful to focus on travel time differences instead of $\mathrm{v} / \mathrm{c}$ ratios. The $\mathrm{v} / \mathrm{c}$ ratio has limitations that do not reflect the impacts of the two-lane sections to the east. Ben Chaney will coordinate with Kittelson to focus on using travel time differences instead of $\mathrm{v} / \mathrm{c}$ ratios (Katie).
d. ODOT's analysis shows no days would be over capacity in 2019, 1 hour a month would be over capacity in 2030, and variation of hours one day a week in July and August would be over capacity in 2050 (Katie).
e. ODOT is still looking for clarity about the design exception. ODOT is looking for examples where design exceptions are required on a private driveway or public approach on a two-way stop. (Katie, Jeff, Cahn)
f. ODOT would like to consider sharing the delay results at the two-way stop with the community to get their feedback on the delay differences between the alternatives (Katie).
g. ODOT would like to consider comparing queuing results with the actual capacity for queueing in the parking lots (Katie).
h. From a safety perspective, there were several crashes reported within the community that are likely related to the additional lane per direction (5-lane section). We have seen similar crash data along US 199 in Region 3 where there are more crashes in communities with passing lanes.
i. Verify our decisions:
i. The 3-lane alternative will experience more congestion, but will slow traffic through the community.
ii. The 3-lane cross section addresses the crashes associated with the extra lanes.
13. Other topics
a. Truck drivers are using the Grocery parking to park trucks. Consider using extra wide ROW along the grocery store for truck parking. (Joe)
b. Consider including a transit stop if including truck parking (Kristin).
c. A separate truck lane could allow trucks to pull off the roadway, but the lane could also be abused by vehicles trying to pass (Cahn).
d. Verify our decisions:
i. This was not a need that was identified by the community and noted in the project goals.

## 14. Summary of discussion

a. Include a $14^{\prime}$ width for a TWLTL when a refuge island is included and a $12^{\prime}$ width for a TWLTL without a refuge island.
b. Travel lane widths should range between $11^{\prime}$ to $12^{\prime}$ depending on the context; $12^{\prime}$ width is preferable for snowy conditions and freight needs.
c. Do not include $35-\mathrm{mph}$ target speed in alternative plans; assume $40-\mathrm{mph}$ target speeds matching the currently posted speed.
d. A RRFB should be designed with a raised refuge island, and a pedestrian signal should be designed if a refuge island cannot be included. An alternative consideration is a refuge island flush with the asphalt which would likely be designed with a pedestrian signal.
e. Snow storage is a priority. A buffer space would be the preference for snow storage.
f. A sidewalk or multi-use path would not be maintained by the Maintenance group.

Microsoft Teams Chat


```
HAYES Jeffrey D (External) 10/27 3.52 PM
4.
would suggest wider lanes in the }3\mathrm{ lane section and narrower in the 5 lane. The }3\mathrm{ lane section will in
general help slow the speed with the greater volumes.
Marek, Joe (External) 10/27 3:59 PM dl}
context and automated enforcement
SH Hoelscher, Scott (External) 10/27 4;00 PM &l}
sorry, I need to leave for another meeting
WINDSHEIMER Rian M (External) 10/27 4.02 PM
What Jeff Said. Clackamas County would not likely do it
CHANEY Benjamin *Ben (External) 10/27 4.03 PM
41
As Jeff/Joe mentioned, current law only allows Cities to operate automated enforcement
HAYES Jeffrey D (External) 10/27 4:05 PM
```

```
As a note that is posted, not target
10/27 4:05 PM
so 40 Mph is what you should use
```

JM

WINDSHEIMER Rian M (Extemal) $10 / 27.409 \mathrm{PM}$
Pedestrian Hybrid Beacon seems reasonable. Anything in the roadway may get plowed ...

STALLMAN Kristen (External) 10/27 4:10 PM
I reached out to the project leader for the Warm Springs Safety project for more info.

Anything in the roadway would be an issue.

STALLMAN Kristen (Extemal) 10/27:4:13 PM
Transit Stops would also be nice.


STEPHENS Shawn A (External) 10/27 4:24 PM
Cleaning a raised median is alsn a roncern We dnn't have the ability to keep this clean.


Marek, Joe (External) 10/27 4:25 PM
sidwalks are responsibility of adjacent property owner

CHANEY Benjamin *Ben (External) 10/27 4:26 PM 2
Marek, Joe Strava data supports that the ped bridge is used:


## BE BELL Katherine E (External) 10/27 4:26 PM <br> BE

brb
back

JM
Marek, Joe (External) 10/27 4:29 PM

HAYES Jeffrey D (External) 10/27 4:31 PN

K21599 - US26: Salmon Rv to Zigzag is building a MUP on the south side of US26.

CB) CHANEY Berjamin *Ben (External) 10/27481 PM
As Jeff alluded to, I believe there's a drainage ditch between the MUP and the highway for K21599
$10 / 27.432 \mathrm{PN}$
As Cahn alluded to, the MUP in K21599 connects to a signal. Fire dept. access signal, being modified to include a pedestrian phase.

JANSEN Shane E (External) T0/27 4/33 PM
Do they have plans for maintenance on the new sidewalk at the east end of Sandy?

BERNHARDT Magnus U (External) 10/27 4.95 PM \& 1
Less surface area to plow with 3-lane.


LAM Canh T (External) 10/27.4.86 PM Edited
I would call it as a wide sidewalk. However folks use it it's up to them. Would not encourage to state it as a path.

CHANEY Benjamin "Ben (External) 10/27.4.41 PM
Of note re: the Government Camp snow removal, the sidewalks in their central district are flush with the roadway. (to my recollection)


## Appendix G <br> Queuing Output Worksheets

## 5-Lane Alternative <br> Queue Analysis Worksheets <br> APM <br> 2030 Thursday







Intersection Analysis Adjusted Volumes

Intersection Analysis Adjusted Volumes						
Alternative	Year	Day	Intersection		Original   Volume	Updated Capped Volumes
3 In	2030	Sun	1	WBT	1625	Below 1700
3 ln	2030	Sun	2	WBT	1628	Below 1700
3 ln	2030	Sun	3	WBT	1587	Below 1700
3 In	2030	Sun	4	WBT	1623	Below 1700
3 In	2030	Sun	4	WBT	1605	Below 1700
5 ln	2030	Sun	1	WBT	1625	Below 1700
5 ln	2030	Sun	2	WBT	1628	Below 1700
5 ln	2030	Sun	3	WBT	1587	Below 1700
5 ln	2030	Sun	4	WBT	1623	Below 1700
5 ln	2030	Sun	4	WBT	1605	Below 1700
3 In	2050	Sun	1	WBT	2141	1700
3 ln	2050	Sun	2	WBT	2146	1700
3 ln	2050	Sun	3	WBT	2092	1700
3 In	2050	Sun	4	WBT	2139	1700
3 In	2050	Sun	4	WBT	2115	1700
5 In	2050	Sun	1	WBT	2141	1700
5 ln	2050	Sun	2	WBT	2146	1700
5 ln	2050	Sun	3	WBT	2092	1700
5 ln	2050	Sun	4	WBT	2139	1700
5 ln	2050	Sun	4	WBT	2115	1700

# 5-Lane Alternative <br> Queue Analysis Worksheets <br> APM <br> 2030 Sunday 







## 5-Lane Alternative <br> Queue Analysis Worksheets <br> APM <br> 2050 Thursday







Intersection Analysis Adjusted Volumes						
Alternative	Year	Day	Intersection		Original   Volume	Updated Capped   Volumes
3 In	2030	Sun	1	WBT	1625	Below 1700
3 ln	2030	Sun	2	WBT	1628	Below 1700
3 In	2030	Sun	3	WBT	1587	Below 1700
3 ln	2030	Sun	4	WBT	1623	Below 1700
3 ln	2030	Sun	4	WBT	1605	Below 1700
5 ln	2030	Sun	1	WBT	1625	Below 1700
5 ln	2030	Sun	2	WBT	1628	Below 1700
5 ln	2030	Sun	3	WBT	1587	Below 1700
5 In	2030	Sun	4	WBT	1623	Below 1700
5 In	2030	Sun	4	WBT	1605	Below 1700
3 ln	2050	Sun	1	WBT	2141	1700
3 In	2050	Sun	2	WBT	2146	1700
3 ln	2050	Sun	3	WBT	2092	1700
3 In	2050	Sun	4	WBT	2139	1700
3 ln	2050	Sun	4	WBT	2115	1700
5 In	2050	Sun	1	WBT	2141	1700
5 In	2050	Sun	2	WBT	2146	1700
5 ln	2050	Sun	3	WBT	2092	1700
5 In	2050	Sun	4	WBT	2139	1700
5 In	2050	Sun	4	WBT	2115	1700

# 5-Lane Alternative Queve Analysis Worksheets APM 2050 Sunday 

Original Volumes Over Capacity
Volumes not exceeding the Capacity (1700 veh)






## 3-Lane Alternative <br> Queue Analysis Worksheets <br> APM <br> 2030 Thursday







## Intersection Analysis Adjusted Volumes

Intersection Analysis Adjusted Volumes						
Alternative	Year	Day	Intersection		Original Volume	Updated Capped Volumes
3 In	2030	Sun	1	WBT	1625	Below 1700
3 ln	2030	Sun	2	WBT	1628	Below 1700
3 ln	2030	Sun	3	WBT	1587	Below 1700
3 ln	2030	Sun	4	WBT	1623	Below 1700
3 ln	2030	Sun	4	WBT	1605	Below 1700
5 In	2030	Sun	1	WBT	1625	Below 1700
5 ln	2030	Sun	2	WBT	1628	Below 1700
5 ln	2030	Sun	3	WBT	1587	Below 1700
5 ln	2030	Sun	4	WBT	1623	Below 1700
5 ln	2030	Sun	4	WBT	1605	Below 1700
3 In	2050	Sun	1	WBT	2141	1700
3 ln	2050	Sun	2	WBT	2146	1700
3 ln	2050	Sun	3	WBT	2092	1700
3 ln	2050	Sun	4	WBT	2139	1700
3 ln	2050	Sun	4	WBT	2115	1700
5 In	2050	Sun	1	WBT	2141	1700
5 ln	2050	Sun	2	WBT	2146	1700
5 ln	2050	Sun	3	WBT	2092	1700
5 ln	2050	Sun	4	WBT	2139	1700
5 ln	2050	Sun	4	WBT	2115	1700

# 3-Lane Alternative <br> Queve Analysis Worksheets APM <br> 2030 Sunday 







## 3-Lane Alternative <br> Queue Analysis Worksheets <br> APM <br> 2050 Thursday







Intersection Analysis Adjusted Volumes						
Alternative	Year	Day	Intersection		Original Volume	Updated Capped   Volumes
3 In	2030	Sun	1	WBT	1625	Below 1700
3 In	2030	Sun	2	WBT	1628	Below 1700
3 In	2030	Sun	3	WBT	1587	Below 1700
3 ln	2030	Sun	4	WBT	1623	Below 1700
3 ln	2030	Sun	4	WBT	1605	Below 1700
5 ln	2030	Sun	1	WBT	1625	Below 1700
5 ln	2030	Sun	2	WBT	1628	Below 1700
5 ln	2030	Sun	3	WBT	1587	Below 1700
5 ln	2030	Sun	4	WBT	1623	Below 1700
5 In	2030	Sun	4	WBT	1605	Below 1700
3 ln	2050	Sun	1	WBT	2141	1700
3 In	2050	Sun	2	WBT	2146	1700
3 In	2050	Sun	3	WBT	2092	1700
3 ln	2050	Sun	4	WBT	2139	1700
3 ln	2050	Sun	4	WBT	2115	1700
5 ln	2050	Sun	1	WBT	2141	1700
5 In	2050	Sun	2	WBT	2146	1700
5 ln	2050	Sun	3	WBT	2092	1700
5 In	2050	Sun	4	WBT	2139	1700
5 In	2050	Sun	4	WBT	2115	1700

## 3-Lane Alternative Queue Analysis Worksheets APM 2050 Sunday

 Original Volumes Over CapacityVolumes not exceeding the Capacity (1700 veh)



Queue Length Estimation at Two-Way STOP Controlled Intersection							
Project Information							
Analyst:   Jurisdiction:   Date Performed:   Analysis Time Period:   Intersection:   East/West Street:   North/South Street:		AIR 3LN ALT			Agency/Co.:   Project ID:   Analysis Year:		KAI
		ODOT					27358
		1/12/2023					2050
		Sunday, PM					
		US 26 / Dairy Queen Driveway					
		US 26					
		Dairy Queen Driveway					
Instructions							
Step 1 Identify Lane Groups and its corresponding code from below							
Lane Group Code :		MJL		Major street separate left turn lane / TWLT			
		MNLTR	2	Minor street shared left, through and right lane			
		MNLR	3	Minor street shared left, and right lane			
		MNL	4	Minor street separate left turn lane			
		MNR	5	Minor street separate right turn lane			
Step 2	Calculate Lane Group Volumes, \% Heavy Vehicles, and Conflicting Volumes Identify the presence of an upstream signal within $1 / 4$ mile on major approches (Signal) Identify the presence of a separate LT lane / TWLT on major street approaches (LT)						
Step 3 Verify the input ranges to feed into the models (see QueueLengthsModels sheet)							
Step 4 Input the information and obtain queue lengths in feet from Results column	Input the information and obtain queue lengths in feet from Results column						
Note:	Round off queue lengths to the next highest 25 feet when reporting						
Input							Results
Approach	Lane Group, Code	Volume, veh/hr	$\begin{aligned} & \hline \% \text { Heavy } \\ & \text { Vehicles } \end{aligned}$	Conflicting   Volume,veh/hr	$\begin{aligned} & \hline \hline \text { Signal } \\ & (0 \text { or } 1) \end{aligned}$	Left Turn Lane   $(0$ or 1$)$	Queue Length   Feet
Example				VOLUMES ABOVE CAPACITY			
SB	MNL	35	0.0\%	3199	0	1	96
SB	MNR	71	0.0\%	2124	0	1	223
EB	MJL	38	0.0\%	2153	0	1	193
SB	MNL	35	0.0\%	2807	0	1	89
SB	MNR	71	0.0\%	1732	0	1	186
EB	MJL	38	0.0\%	1761	0	1	129
				VOLUMES C	APPED	AT 1700	



Queue Length Estimation at Two-Way STOP Controlled Intersection							
Project Information							
Analyst:   Jurisdiction:		AIR 3LN ALT			Agency/Co.:		KAI
		ODOT			Project ID:   Analysis Year:		27358
Date Performed:   Analysis Time Period:		1/12/2023					2050
		Sunday, PM					
Analysis Time Period: Intersection:		US 26 / E Henry Creek Road					
East/West Street:		US 26					
North/Sou	th Street:	E Henry Creek Road					
Instructions							
Step 1 Identify Lane Groups and its corresponding code from below							
Lane Group Code :		MJL		Major street separate left turn lane / TWLT			
		MNLTR	2	Minor street shared left, through and right lane			
		MNLR	3	Minor street shared left, and right lane			
		MNL	4	Minor street separate left turn lane			
		MNR	5	Minor street separate right turn lane			
Step 2 Calculate Input		ut Parameters			-		
Identify the presence of an upstream signal within $1 / 4$ mile on major approches (Signal)							
Step 3 Verify the input ranges to			d into the	TWLT on major street approaches (LT)dels (see QueueLengthsModels sheet)			
Step 4 Input the information and			tain queue	ngths in feet from Results column			
Note: $\quad$ Round off queue lengths to the next highest 25 feet when reporting							
Input		Volume, $\mathrm{veh} / \mathrm{hr}$		Conflicting   Volume,veh/hr			Results
Approach	Lane Group, Code		$\begin{aligned} & \hline \% \text { Heavy } \\ & \text { Vehicles } \end{aligned}$		$\begin{aligned} & \hline \hline \text { Signal } \\ & (0 \text { or } 1) \end{aligned}$	Left Turn Lane $(0$ or 1$)$	Queue Length   Feet
Example				VOLUMES ABOVE CAPACITY			
SB	MNLTR	14	0.0\%	3155	0	0	79
NB	MNLTR	18	0.0\%	3153	0	0	80
WB	MJL	7	0.0\%	1021	0	1	50
EB	MJL	2	0.0\%	2117	0	1	151
SB	MNLTR	14	0.0\%	2740	0	0	63
NB	MNLTR	18	0.0\%	2738	0	0	64
WB	MJL	7	0.0\%	1021	0	1	50
EB	MJL	2	0.0\%	1702	0	1	98

[^24]
[^0]:    ${ }^{1}$ The Existing Conditions 2022, Opening Year (2030) No Build, and Future Year (2050) No Build are summarized in TM\#4

[^1]:    ${ }^{2}$ The location of a pedestrian refuge island(s) will be informed by input received aspart of Virtual Open House, past input received as part of the Community Drop-in Event, access management information and location of future transit stop (to be identified as part of US 26 Design Refinement Plan).

[^2]:    ${ }^{3}$ The AADTused for crossing a pprovals will be based on the volumes at opening day. The AADT on US 26 for 2022 is 9,800 vehic les perday, and the AADT projected for 2030 is 11,100 vehicles perday.
    ${ }^{4}$ Through disc ussions with ODOTtechnical staff and based on $85^{\text {th }}$ percentile speedsexceeding the posted speed limit by approximately 20 mph , the anticipated operating speed for the 5 -lane and 3 -lane altematives is expected to be greater than 40 mph .

[^3]:    ${ }^{5}$ Although the tube counts showed a peak hour on US 26 mainline traffic from 1:45 to 2:45 PM on Thursday, the difference in traffic volumes on US 26 between 1:45-2:45 PM and 2:00-3:00 PM was less than one percent on the west end of town. Therefore, it was determined that the difference in traffic volumes was negligible and that the Thursday tuming movement counts captured the peak hourforthat day.

[^4]:    ${ }^{6}$ Although additional apartments are envisioned as part of SkiBowl's plans, no specific plans or trip generation assumptions have been developed to date. Current disc ussions indicate visions for approximately 40 units. The future volume tablesused to develop the annual growth rate accounts forstandard growth in the area.

[^5]:    ${ }^{7}$ The AADTused for crossing a pprovals will be based on the volumes at opening day. The AADTon US 26 for 2022 is 9,800 vehic les perday, and the AADT projected for 2030 is 11,100 vehicles perday.
    ${ }^{8}$ Through disc ussions with ODOTtechnic al staff and based on $85^{\text {th }}$ percentile speedsexceeding the posted speed limit by a pproximately 20 mph , the anticipated operating speed forthe 5 -lane and 3 -lane altematives is expected to be greater than 40 mph .

[^6]:    ${ }^{9}$ The AADTused for crossing a pprovals will be based on the volumes at opening day. The AADTon US 26 for 2022 is 9,800 vehic les perday, and the AADTprojected for 2030 is 11,100 vehicles perday.
    10 Through discussions with ODOTtechnic al staff and based on $85^{\text {th }}$ percentile speedsexceeding the posted speed limit by approximately 20 mph , the anticipated operating speed for the 5 -lane and 3-lane altematives is expected to be greater than 40 mph .
    ${ }^{11}$ Through disc ussions with ODOTtec hnic al staff, a pedestrian signal is recommended

[^7]:    12 Consistency with modal considerations is based on the Rural Community context and guidance provided in ODOT's HDM.

[^8]:    13 See Appendix " $D$ " for summary of community input received as part of Community Drop-In Event

[^9]:    Kittelson \& Associates, Inc

[^10]:    Copyright © 2023 University of Florida. All Rights Reserved.

[^11]:    Copyright © 2023 University of Florida. All Rights Reserved.

[^12]:    Copyright © 2023 University of Florida. All Rights Reserved.

[^13]:    Copyright © 2023 University of Florida. All Rights Reserved.

[^14]:    Copyright © 2022 University of Florida. All Rights Reserved.

[^15]:    Copyright © 2022 University of Florida. All Rights Reserved.

[^16]:    Copyright © 2022 University of Florida. All Rights Reserved.

[^17]:    Copyright © 2022 University of Florida. All Rights Reserved.

[^18]:    Copyright © 2022 University of Florida. All Rights Reserved.

[^19]:    Copyright © 2022 University of Florida. All Rights Reserved.

[^20]:    Copyright © 2022 University of Florida. All Rights Reserved.

[^21]:    Copyright © 2023 University of Florida. All Rights Reserved.

[^22]:    Copyright © 2023 University of Florida. All Rights Reserved.

[^23]:    Copyright © 2023 University of Florida. All Rights Reserved.

[^24]:    VOLUMES CAPPED AT 1700

